Role of Arbuscular Mycorrhizal Fungi in Biological Nitrogen Fixation and Nitrogen Transfer from Legume to Companion Species

Автор: Mazen Ibrahim

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 2 т.17, 2021 года.

Бесплатный доступ

The production of food crops in sustainable agriculture demands the use of renewable resources, which include the potential role of arbuscular mycorrhiza fungi (AMF) and Biological Nitrogen Fixation (BNF) for supplying nitrogen (N) for crops. Associative action of AMF in legumes has a great impact on root, shoot development and phosphorous uptake which results in the enhancement of nodulation and nitrogen fixation. Biological nitrogen fixing crops can contribute N to the neighbouring crops by N transfer. N compounds (NH4+, NO3-, amino acids, ureides, peptides and proteins) released from nodulated roots, decomposed legume debris, or root exudates to soil solution are absorbed by AM hyphae as the first direct pathway of N transfer. Absorbed N by AMF is translocated as NH4+, amino acids, and peptides from fungal cell to neighbouring plant cells. This transfer could involve NH4+ and NO3- transporters, amino acid permeases and peptide transporters. Plants could be interconnected by mycorrhizal mycelia to form common AM networks that provide the another direct pathways for N transfer from one plant to another. Although the relatively small role of common AM networks in N transfer, the overall AMF contributions to N transfer are considered to be of great importance for legume and non-legume intercropping systems in sustainable agriculture.

Еще

Arbuscular mycorrhizal fungi, BNF, nitrogen transfer

Короткий адрес: https://sciup.org/143173894

IDR: 143173894

Список литературы Role of Arbuscular Mycorrhizal Fungi in Biological Nitrogen Fixation and Nitrogen Transfer from Legume to Companion Species

  • Abd-Alla M.H., El-Enany A.W.E., Nafady N.A., Khalaf D.M., Morsy F.M. (2014). Synergistic interaction of Rhizobium leguminosarum bv. Viciae andarbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for faba bean (Vicia faba L.) in alkaline soil. Microbiol. Res., 169, 49–58.
  • Albrecht C., Geurts T., Bisseling R. (1999). Legume nodulation and mycorrhizae formation; two extremes in host specificity meet. EMBO J. 18:281–288.
  • Allen J.W., Shachar-Hill Y. (2009). Sulfur transfer through an arbuscular mycorrhiza. Plant Physiol., 149, 549–560.
  • Antunes P.M., de Varennes A., Rajcan I., Goss M.J. (2006). Accumulation of specific flavonoids in soybean (Glycine max (L.) Merr.) as a function of the early tripartite symbiosis with arbuscular mycorrhizal fungi and Bradyrhizobium japonicum (Kirchner) Jordan. Soil Biol. Biochem., 38: 1234–1242
  • Azaizeh H.A., Marschner H., Romheld V., Wittenmayer L. (1995). Effects of a vesicular-arbuscular mycorrhizal fungus and other soil microorganisms on growth, mineral nutrient acquisition and root exudation of soil-grown maize plants. Mycorrhiza, 5:321-327.
  • Azcón R., El-Atrash F. (1997). Influence of arbuscular mycorrhizae and phosphorus fertilization on growth, nodulation and N2 fixation (15N) in Medicago sativa at four salinity levels. Biol. Fertil. Soils, 24:81-86
  • Azcón R., Rubio R., Barea J.M. (1991). Selective interactions between different species of mycorrhizal fungi and Rhizobium meliloti strains, and their effects on growth, N2-fixation (15N) and nutrition of Medicago sativa L. New Phytologist 117: 399–404.
  • Baird L.M., Caruso K.J. (1994). Development of root nodules in Phaseolus vulgaris inoculated with Rhizobium and mycorrhizal fungi. International Journal of Plant Sciences 155: 633–639.
  • Barea J.M., Azcón, R., Azcon Aquilar. (2002). Mycorrhizophere interaction to improve plant fitness and soil quality. Antonie Van Leeuwenhoek, 81: 343-351.
  • Barea J.M., El-Atrach F., Azcón R. (1989). Mycorrhiza and phosphate interactions as affecting plant development: N2-fixation and N uptake from soil in legume-grass mixtures by using a 15N dilution technique. Soil Biol. Biochem., 21, 581– 589.
  • Bethlenfalvay G.J, Brown M.S., Franson R.L. (1990). Glycin–Glomus-Bradyrhizobium symbiosis. Plant Physiol., 94, 723-728.
  • Bethlenfalvay G.J., Reyes-Solis M.G., Camel S.B., Ferrera-Cerrato R. (1991). Nutrient transfer between the root zones of soybean and maize plants connected by a common mycorrhizal mycelium. Physiol. Plantarum, 82, 423–432.
  • Bomfeti C.A., Florentino L.A., Guimarães A.P., Cardoso P.G., Guerreiro M.C., Moreira F.M.S. (2011). Exopolysaccharides produced by the symbiotic nitrogen-fixing bacteria of Leguminosae. Rev. Bras. Ciênc. Solo, 35: 657–671
  • Bonfante P, Anca I.A. (2009). Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu. Rev. Microbiol., 63: 363–383.
  • Bonfante P., Genre A. (2008). Plants and arbuscular mycorrhizal fungi: an evolutionary- developmental perspective. Trends Plant Sci., 13: 492–498
  • Breuninger M., Trujillo C.G., Serrano E., Fischer R. Requena N. (2004). Different nitrogen sources modulate activity but not expression of glutamine synthetase in arbuscular mycorrhizal fungi. Fungal Genet. Biol., 41, 542–552.
  • Brophy L.S., Heichel G.H. (1989). Nitrogen release from roots of alfalfa and soybean grown in sand culture. Plant Soil, 116 (1): 77-84.
  • Brown M.S., Bethlenfalvay G.J. (1988). The glycineglomus-rhizobium symbiosis vii. Photosynthetic nutrient-use efficiency in nodulated, mycorrhizal soybean. Plant Physiology, 86(4), 1292-1297.
  • Brundrett M.C. (2002). Coevolution of roots and mycorrhizas of land plants. New Phytol., 154: 275–304.
  • Brundrett M.C. (2009). Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil, 320: 37–77.
  • Bücking H., Kafle A. (2015). Role of Arbuscular Mycorrhizal Fungi in the Nitrogen Uptake of Plants: Current Knowledge and Research Gaps Agronomy 2015, 5, 587-612; doi:10.3390/agronomy5040587
  • Bücking H., Liepold E., Ambilwade P. (2012). The role of the mycorrhizal Symbiosis in nutrient uptake of plants and the regulatory mechanisms underlying these transport processes. In: Dhal NK, Sahu SC (eds) Plant science. Intec, Janeza Trdine. P 107.
  • Casieri L., Ait Lahmidi N., Doidy J., Veneault-Fourrey C., Migeon A., Bonneau L., Courty PE., Garcia K., Charbonnier M., Delteil A., Brun A., Zimmermann S., Plassard C., Wipf D. (2013). Biotrophic transportome in mutualistic plant-fungal interactions. Mycorrhiza, 23(8): 597-625.
  • Chalk P.M. (1998). Dynamics of biologically fixed N in legume-cereal rotations: a review, Aust. J. Agric. Res., 49: 303- 316
  • Chalk P.M., Peoples, M.B., McNeill, A.M., Boddey, R.M., Unkovich, M.J., Gardener, M. J., Silva, C.F., Chen, D. (2014). Methodologies for estimating nitrogen transfer between legumes and companion species in agro-ecosystems: a review of 15N-enriched techniques. Soil Biol. Biochem., 73: 10–21.
  • Cheng X.M., Baumgartner K. (2004). Arbuscular mycorrhizal fungimediated nitrogen transfer from vineyard cover crops to grapevines. Biol Ferti Soils, 40:406–12.
  • Chu G.X., Shen Q.R., Li Y. L., Zhang J., Wang S.Q. (2004). Researches on Bi-directional N transfer between the intercropping systems of groundnut with rice cultivated in aerobic soil using 15N foliar labeling method. Acta Ecologica Sinica, 24: 278– 283.
  • Clark R.B., Zeto S.K. (2000). Mineral acquisition by arbuscular mycorrhizal plants. Journal of Plant Nutrition 23: 867–902.
  • Cliquet J.B., Murray P.J., Boucaud J. (1997). Effect of the arbuscular mycorrhizal fungus Glomus fasciculatum on the uptake of amino nitrogen by Lolium perenne. New Phytol., 137:345-349.
  • Day D.A., Kaiser B.N., Thomson R., Udvardi M.K., Moreau S., Puppo A. (2001). Nutrient transport across symbiotic membranes from legume nodules. Austr. J. Plant Physiol., 28:667-674.
  • Dixon R., Kahn D. (2004). Genetic regulation of biological nitrogen fixation. Nat. Rev. Microbiol., 2: 621–631.
  • Forrester D.I., Bauhus J., Cowie A.L., Vanclay J.K. (2006). Mixed-species plantations of Eucalyptus with nitrogen-fixing trees: a review, For. Ecol. Manag., 233: 211- 230.
  • Frankow-Lindberg B.E., Dahlin A.S. (2013). N2 fixation, N transfer, and yield in grassland communities including a deep-rooted legume or non-legume species. Plant Soil, 370 567–581.
  • Frey-Klett P., Garbaye J., Tarkka M. (2007). The mycorrhiza helper bacteria revisited. New Phytol., 176: 22–36.
  • Frey B., Schuepp H. (1992). Transfer of symbiotically fixed nitrogen from berseem (Trifolium alexandrinum L.) to maize via vesicular-arbuscular mycorrhizal hyphae. New Phytol., 122: 447-454.
  • Frey, B., Schuepp H. (1993). A role of vesiculararbuscular (VA) mycorrhizal fungi in facilitating interplant N transfer of N. Soil Biol. Biochem., 25: 651–658.
  • Fujita K., Ofosu-Budu K.G., Ogata S. (1992). Biological nitrogen fixation in mixed legume-cereal cropping systems. Plant Soil, 141: 155–175.
  • Gachomo E., Allen J.W., Pfeffer P.E., Govindarajulu M., Douds D.D., Jin H.R., Nagahashi G., Lammers P.J., Shachar-Hill Y., Bücking H. (2009). Germinating spores of Glomus intraradices can use internal and exogenous nitrogen sources for de novo biosynthesis of amino acids. New Phytol., 184: 399–411.
  • Garg N., Chandel S. (2011). Effect of mycorrhizal inoculation on growth, nitrogen fixation, and nutrient uptake in Cicer arietinum (L.) under salt stress. Turk J Agric For., 35: 205-214.
  • Gaude N.S., Bortfeld D.N., Lohse M., Krajinski F. (2012). Arbuscule-containing and non-colonized cortical cells of mycorrhizal roots undergo extensive and specific reprogramming during arbuscular mycorrhizal development. Plant J., 69 (3): 510–528.
  • Gianinazzi-Pearson V. (1996). Plant cell responses to arbuscular mycorrhiza fungi: Getting to the roots of the symbiosis. Plant Cell, 8: 1871-1883.
  • Gianinazzi-Pearson V., Gianinazzi S. (1989). Cellular and genetical aspects of interactions between hosts and fungal symbionts in mycorrhizae. Genome, 31(1): 336-341.
  • Govindarajulu M., Pfeffer P.E., Jin H., Abubaker J., Douds D.D., Allen J.W., Bücking H., Lammers, P.J., Shachar-Hill Y. (2005). Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature, 435: 819–823.
  • Guether M., Neuhäuser B., Balestrini R., Dynowski M., Ludewig U., Bonfante P. (2009). A Mycorrhizalspecific ammonium transporter from Lotus japonicus acquires nitrogen released by arbuscular mycorrhizal fungi. Plant Physiol., 150: 73–83.
  • Hamel C., Furlan V., Smith D. (1991a). N2-fixation and transfer in a field grown mycorrhizal corn and soybean intercrop. Plant and soil, 133(2): 177-185.
  • Hamel C., Nesser, C., Barrantes-Cartín, U., Smith, D.L. (1991b). Endomycorrhizal fungal species mediate 15N transfer from soybean to maize in nonfumigated soil. Plant Soil 138, 41–47.
  • Hamel C., Smith D.L. (1992). Mycorrhizae-mediated 15N transfer from soybean to corn in field-grown intercrops: Effect of component crop spatial relationships. Soil Biol. Biochem., 24 (5): 499-501.
  • Harrison M.J. (1999). Biotrophic interfaces and nutrient transport in plant/fungal symbioses. J Exp. Bot., 50: 1013-1022.
  • Hauser M., Narita V., Donhardt A.M., Naider F., Becker J.M. (2001). Multiplicity and regulation of genes encoding peptide transporters in Saccharomyces cerevisiae. Mol. Membr. Biol., 18: 105-112.
  • Hawkins H.J., Johansen A., George E. (2000). Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant Soil, 22: 275– 285.
Еще
Статья научная