Role of ascorbic acid against pathogenesis in plants

Автор: Taqi Ahmed Khan, Mohd Mazid, Firoz Mohammad

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 3 т.7, 2011 года.

Бесплатный доступ

Plants vary considerably in their physiological response to various kinds of environmental stress. To prevent damage caused by pathogenic attack and to acclimate to change in their environment, plants have evolved direct and indirect mechanism for sensing and responding to pathogenic stimuli. Ascorbic acid (AA) is found in all eukaryotes including animals and plants and lack completely in prokaryotes except cyanobactaria, have been reported to have a small amount. AA has now gained significant place in plant science, mainly due to its properties (antioxidant and cellular reductant etc.), and multifunctional roles in plant growth, development, and regulation of remarkable spectrum of plant cellular mechanisms against environmental stresses. As it is evident from the present review, recent progress on AA potentiality in tolerance of plants to pathogenic attack has been impressive to a greater extent. AA produced in plants as indirect response against pathogenic attack at different sites in plants and its intertwined network cause changes in nuclear gene expression via retrograde signaling pathways, or even into systemic responses, all of which are associated with pathogenic resistance. Indeed, AA plays an important role in resistance to pathogenesis.

Еще

Ascorbic acid, pathogenesis, plant hormones, ros signaling, pr protein

Короткий адрес: https://sciup.org/14323533

IDR: 14323533

Список литературы Role of ascorbic acid against pathogenesis in plants

  • Agrawal, G.K., Rakwal, R., Jwa, N.S., Agrawal, V.P. (2001). Signaling molecules and blast pathogen attack activates rice OsPR1a and OsPR1b genes: a model illustrating components participating during defense/stress response. Plant Physiology and Biochemistry, 39: 1095-1103.
  • Arrigioni, O., De Tullio, M.C. (2000). The role of ascorbic acid in cell metabolism: between gene directed functions and unpredictable chemical reactions. Journal of plant physiology, 157: 481-488.
  • Arrigioni, O., De Tullio, M.C. (2002). Ascorbic acid: much more than just an antioxidant. Biochimica et Biophysica Acta, 1569: 1-9.
  • Baier, M., Stroher, E., Dietz, K.-J. (2004). The acceptor availability at photosystem I and ABA control nuclear expression of 2-Cys peroxiredoxin-A in Arabidopsis thaliana. Plant Cell Physiology, 45: 997-1006.
  • Bala, R., Thukral, A.K. (2011). Phytoremediation of Cr(VI) by Spirodela polyrrhiza (L.) Schleiden employing reducing and chelating agents. Int. J. Phytoremediation, 13(5): 465-491.
  • Barth, C., Moeder, W., Klessig, D.F., Conklin, P.L. (2004). The timing of senescence and response to pathogens is altered in the ascorbate-deficient Arabidopsis mutant vitamin c-1. Plant Physiology, 134: 1784-1792.
  • Bent, A.F., Innes, R.W., Ecker, J.R., Staskawicz, B.J. (19920. Disease development in ethylene-insensitive Arabidopsis thaliana infected with virulent and avirulent Pseudomonas and Xanthomonas pathogens. Molecular Plant Microbe Interactions, 5: 372-378.
  • Bethke, P.C., Lonsdale, J.E., Fath, A., Jones, R.L. (1999). Hormonally regulated programmed cell death in barley aleurone cells. Plant Cell, 11: 1033-1045.
  • Boyer, J.S. (1982). Plant productivity and environment. Science, 218: 443-448.
  • Chang, C., Shockey, J.A. (1999). The ethylene response pathway. Curr. Opin. Plant Biol., 2: 352-358.
  • Cohn, J., Sessa, G., Martin, G.B. (2001). Innate immunity in plants. Curr. Opin. Immunol., 13: 55-62.
  • Conklin, P.L. (2001). Recent advances in the role and biosynthesis of ascorbic acid in plants. Plant, cell and Environment, 24: 383-394.
  • Conklin, P.L., Barth, C. (2004). Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone, pathogens, and the onset of senescence. Plant, cell and Environment, 27: 959-971.
  • Crute, I., Beynon, J., Dangl, J.L., Holub, E.B., Mauch-Mani, B., Slusarenko, A., Staskawicz, B., Ausubel, F.M. (1994). Microbial pathogenesis of Arabidopsis, in: Meyerowitz, E.M., Somerville, C.R. (eds.), Cold Spring Harbor Laboratory Press, Plainview, NY, pp. 705-747.
  • Da Silva, L.C., da Silva, C.A. Junior, de Souza, R.M., Jose Macedo, A., Da Silva, M.V., Dos Santos Correia, M.T. (2011). Comparative analysis of the antioxidant and DNA protection capacities of Anadenhantera colubrina, Libidibia ferrea and Pityrocarpa moniliformis fruits. Food Chem. Toxicol., (in press).
  • Dempsey, D.A., Shah, J., Klessig, D.F. (1999). Salicylic acid and disease resistance in plants. Critical Reviews in Plant Sciences, 18: 547-575.
  • Dias, C.V., Mendes, J.S., Dos Santos, A.C., Pirovani, C.P., da Silva Gesteira, A., Micheli, F., Gramacho, K.P., Hammerstone, J., Mazzafera, P., de Mattos Cascardo, J.C. (2011). Hydrogen peroxide formation in cacao tissues infected by the hemibiotrophic fungus Moniliophthora perniciosa. Plant Physiol Biochem., (in press).
  • Dong, J.G., Fernandez-Maculet, J.C., Yang, S.F. (1992). Purification and characterization of 1-aminocyclopropane-1-carboxylate oxidase from apple fruit. Proceedings of the National Academy of Sciences of the USA, 89: 9789-9793.
  • Dugassa, G.D., Von Alten, H., Schonbeck, F. (1996). Effects of arbuscular mycorrhiza (AM) on health of Linum usitatissimum L. infected by fungal pathogens. Plant and Soil, 185: 173-182.
  • Ellis, C., Turner, J.G. (2001). The Arabidopsis mutant cev1 has constitutively active jasmonate and ethylene signal pathways and enhanced resistance to pathogens. Plant Cell, 13: 1025-1033.
  • Flor, H. (1971). Current status of the gene-for-gene concept. Annu. Rev. Phytopathol., 9: 275-296.
  • Fryer, M.J., Ball, L., Oxborough, K., Karpinski, S., Mullineaux, P.M., Baker, N.R. (2003). Control of ascorbate peroxidase 2 expression by hydrogen peroxide and leaf water status during excess light stress reveals a functional organization of Arabidopsis leaves. Plant Journal, 33: 691-705.
  • Fujita, M., Fujita, Y., Noutoshi, Y., Takahashi, F., Narusaka, Y., Yamaguchi-Shinozaki, K., Shinozaki, K. (2006). Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr. Opin. Plant Biol., 9: 436-442.
  • Glazebrook, J., Zook, M., Mert, F., Kagan, I., Rogers, E.E., Crute, I.R., Holub, E.B., Hammerschmidt, R., Ausubel, F.M. (1997). Phytoalexin-deficient mutants of Arabidopsis reveal that PAD4 encodes a regulatory factor and that four PAD genes contribute to downy mildew resistance. Genetics, 146: 381-392.
  • Gomez-Gomez, L., Boller, T. (2002). Flagellin perception: a paradigm for innate immunity. Trends Plant Sci., 7: 251-256.
  • Greenberg, J.T. (1996). Programmed cell death: a way of life for plants. Proceedings of the National Academy of Sciences of the USA, 93: 12094-12097.
  • Greenberg, J.T., Ausubel, F.M. (1993). Arabidopsis mutants compromised for the control of cellular damage during pathogenesis and aging. Plant Journal, 4: 327-341.
  • Grimmig, B., Gonzalez-Perez, M.N., Leubner-Metzger, G., et al. (2003). Ozone-induced gene expression occurs via ethylene dependent and independent signalling. Plant Molecular Biology, 51: 599-607.
  • Hammond-Kosack, K., Jones, J.D.G. (2000). Response to plant pathogens, in: Buchanan, B., Gruissem, D., Jones, R. (ed.), Biochemistry and Molecular Biology of Plants, Rockville, MD: Am. Soc. Plant Physiol. pp. 1102-1156.
  • Heath, M.C. (2000). Nonhost resistance and nonspecific plant defenses. Curr. Opin. Plant Biol., 3: 315-319.
  • Kangasjarvi, J., Talvinen, J., Utriainen, M., Karjalainen, R. (19940. Plant defence systems induced by ozone. Plant Cell and Environment, 17: 783-794.
  • Katagiri, F., Thilmony, R., He, S.Y. (2002). The Arabidopsis thaliana-Pseudomonas syringae interaction, in: Somerville, C.R., Meyerowitz, E.M. (eds.), American Society of Plant Biologists, Rockville, MD, USA, pp. 1-39.
  • Katay, G., Tyihak, E., Katay, E. (2011). Effect of ascorbigen and 1'-methylascorbigen on disease resistance of bean plants to Uromyces phaseoli. Nat. Prod. Commun., 6(5): 611-615.
  • Knoester, M., Bol, J.F., Vanloon, L.C., Linthorst, H.J.M. (1995). Virus-induced gene-expression for enzymes of ethylene biosynthesis in hypersensitively reacting tobacco. Molecular Plant Microbe Interactions, 8: 177-180.
  • Koch, J.R., Creelman, R.A., Eshita, S.M., Seskar, M., Mullet, J.E., Davis, K.R. (2000). Ozone sensitivity in hybrid poplar correlates with insensitivity to both salicylic acid and jasmonic acid. The role of programmed cell death in lesion formation. Plant Physiology, 123: 487-496.
  • Leon, J., Lawton, M., Raskin, I. (1995). Hydrogen peroxide stimulates salicylic acid biosynthesis in tobacco. Plant Physiology, 108: 1673-1678.
  • Levine, A., Tenhaken, R., Dixon, R., Lamb, C. (1994). H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell, 79: 583-593.
  • Lopez-Munguia, A., Hernandez-Romero, Y., Pedraza-Chaverri, J., Miranda-Molina, A., Regla, I., Martinez, A., Castillo, E. (2011). Phenylpropanoid glycoside analogues: enzymatic synthesis, antioxidant activity and theoretical study of their free radical scavenger mechanism. PLoS One, 6(6): 201-215.
  • Lovegrove, A., Hooley, R. (2000). Gibberellin and abscisic acid signalling in aleurone. Trends Plant Sci., 5: 102-110.
  • Lund, S.T., Stall, R.E., Klee, H.J., 1998. Ethylene regulates the susceptible response to pathogen infection in tomato. Plant Cell 10, 371-382.
  • Martin, G.B. (1999). Functional analysis of plant disease resistance genes and their downstream effectors. Curr. Opin. Plant Biol., 2: 273-279.
  • Noctor, G., Foyer, C.H. (1998). Ascorbate and glutathione; keeping active oxygen control. Annual Review of Plant Physiology and Plant Molecular Biology, 49: 249-279.
  • Orvar, B.L., McPherson, J., Ellis, B.E. (1997). Pre-activating wounding response in tobacco prior to high-level ozone exposure prevents necrotic injury. Plant Journal, 11: 203-212.
  • Overmyer, K., Brosche, M., Kangasjarvi, J. (2003). Reactive oxygen species and hormonal control of cell death. Trends in Plant Science, 8: 335-342.
  • Overmyer, K., Tuominen, H., Kettunen, R., Betz, C., Langebartels, C., Sandermann, H., Kangasjarvi, J. (2000). Ozone-sensitive Arabidopsis rcd1 mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxidedependent cell death. Plant Cell, 12: 1849-1862.
  • Pastori, G.M., Kiddle, G., Antoniw, J., Bernard, S., Veljovic-Jovanovic, S., Verrier, P.J., Noctor, G., Foyer, C.H. (2003). Leaf vitamin C contents modulate plant defense transcripts and regulate genes that control development through hormone signaling. Plant Cell, 15: 939-951.
  • Pavet,V., Olmos, E., Kiddle, G., Mowla, S., Kumar, S., Antoniw, J., Alvarez, M.E., Foyer, C.H. (2005). Ascorbic acid deficiency activates cell death and disease resistance responses in Arabidopsis. Plant Physiology, 139: 1291-1303.
  • Pignocchi, C., Foyer, C.H. (2003). Apoplastic ascorbate metabolism and its role in the regulation of cell signalling. Current Opinion in Plant Biology, 6: 379-389.
  • Rao, M.V., Davis, K.R. (2001). The physiology of ozone induced cell death. Planta, 213: 682-690.
  • Rao, M.V., Koch, J.R., Davis, K.R. (2000a). Ozone: a tool for probing programmed cell death in plants. Plant Molecular Biology, 44: 345-358.
  • Ritchie, S., Gilroy, S. (1998). Calcium-dependent protein phosphorylation may mediate the gibberellic acid response in barley aleurone. Plant Physiol., 116: 765-776.
  • Roth, U., Friebe, A., Schnabl, H. (2000). Resistance induction in plants by a brassinosteroid-containing extract of Lychnis viscaria L. Zeitschrift Naturforschung, 55: 552-559.
  • Ryals, J., Neuenschwander, U., Willits, M., Molina, A., Steiner, H., Hunt, M. (1996). Systemic acquired resistance. Plant Cell, 8: 1809-1819.
  • Sandermann, H., Ernst, D., Heller, W., Langebartels, C. (1998). Ozone: an abiotic elicitor of plant defence reactions. Trends in Plant Science, 3: 47-50.
  • Schwartz, S.H., Tan, B.C., Gage, D.A., Zeevaart, J.A., McCarty, D.R. (1997). Specific oxidative cleavage of carotenoids by VP14 of maize. Science, 276: 1872-1874.
  • Shah, J., Klessig, D.F. (1999). Salicylic acid: signal perception and transduction. Biochemistry and Molecular Biology of Plant Hormones, in: Hooykaas, P.P.J., Hall, M.A., Libbenga, K.R. (eds.), Elsevier Science B, V., Amsterdam, The Netherlands, pp. 513-541.
  • Shalata, A., Peter, M., Neumann, (2001). Exogenous ascorbic acid (vitamin C) increases resistance of salt stress and reduces lipid peroxidation. Journal of Experimental Botany, 52 (364): 2207-2211.
  • Sharma, Y.K., Davis, K.R. (1994). Ozone-induced expression of stress-related genes in Arabidopsis thaliana. Plant Physiology, 105: 1089-1096.
  • Shinozaki, K., Yamaguchi-Shinozaki, K. (2000). Molecular responses to dehydration and low temperature: difference and cross-talk between two stress signaling pathways. Current Opinion in Plant Biology, 3: 217-223.
  • Smirnoff, N. (1995). Environment and Plant Metabolism: Flexibility and Acclimation, BIOS Scientific Publishers Ltd, Oxford.
  • Smirnoff, N., Wheeler, G.L. (2000). Ascorbic acid in plants: biosynthesis and function. Crit. Rev. Biochem. Mol. Biol., 35: 291-314.
  • Traber, M.G., Stevens, J.F. (2011). Vitamins C and E: Beneficial effects from a mechanistic perspective. Free Radic. Biol. Med., (in press).
  • Van-der-Hoorn, R.A., Kruijt, M., Roth, R., Brandwagt, B.F., Joosten, M.H., De Wit, P.J. (2001). Intragenic recombination generated two distinct Cf genes that mediate AVR9 recognition in the natural population of Lycopersicon pimpinellifolium. Proc. Natl. Acad. Sci. USA, 98: 10493-10498.
  • Vranova, E., Inze, D., Van Breusegem, F. (2002). Signal transduction during oxidative stress. Journal of Experimental Botany, 53: 1227-1236.
  • Vwioko, E.D., Osawaru, M.E., Eruogun, O.L. (2008). Evaluation of okro (Abelmoschus esculentus L. Moench.) exposed to paint waste contaminated soil for growth, ascorbic acid and metal concentration. African Journal of General Agriculture, 4(1): 39-48.
  • Yu, H.J., Mun, J.H., Kwon, Y.M., Lee, J.S., Kim, S.G. (1999). Two cDNAs encoding pathogenesis-related proteins of Lithospermum erythrorhizon display different expression patterns in suspension cultures. Journal of Plant Physiology, 155: 364-370.
  • Zhu, J.-K. (2001). Plant salt tolerance. Trends in Plant Science, 6: 66-71.
Еще
Статья обзорная