Role of copper in type 2 diabetes mellitus: a mini-review

Автор: Shirur Varsha, Dhone Swati Kale, Shah Shreyas, Sinha Anamika, Sachdev Sanpreet Singh

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 3 т.20, 2024 года.

Бесплатный доступ

Diabetes Mellitus (DM) presents a significant global health challenge, with escalating prevalence rates and associated morbidity and mortality. Despite medical advancements, the mortality rates continue to rise, necessitating a deeper understanding of the pathophysiology and potential therapeutic targets. Copper, a vital trace element, plays an important role in various metabolic processes and homeostatic functions within the human body. Dysregulation of copper metabolism has been implicated in the pathogenesis and progression of DM, contributing to oxidative stress, insulin resistance, altered glycemic control, and metabolic abnormalities. The present review provides an illustrative overview of the role of copper in DM, elucidating its impact on oxidative stress, insulin resistance, glycemic control, and metabolic disturbances.

Еще

Diabetes, hyperglycemia, metabolic disorders, trace elements, insulin resistance

Короткий адрес: https://sciup.org/143182800

IDR: 143182800

Список литературы Role of copper in type 2 diabetes mellitus: a mini-review

  • Almajdoub, A. A., Alzwayi, M. M., & Alaasswad, N. M. (2023). Estimated Blood Levels of Zinc and Copper Among Type-2 Diabetic Patients and Their Relationship to Insulin Resistance. Wadi Alshatti University Journal of Pure and Applied Sciences, 9-15.
  • Badran, M., Morsy, R., Soliman, H., & Elnimr, T. (2016). Assessment of trace elements levels in patients with type 2 diabetes using multivariate statistical analysis. Journal of Trace Elements in Medicine and Biology, 33, 114-119.
  • Bj0rklund, G., Dadar, M., Pivina, L., Doça, M. D., Semenova, Y., & Aaseth, J. (2020). The role of zinc and copper in insulin resistance and diabetes mellitus. Current medicinal chemistry, 27(39), 6643-6657.
  • Caturano, A., D'Angelo, M., Mormone, A., Russo, V., Mollica, M. P., Salvatore, T..... & Sasso, F. C. (2023). Oxidative stress in type 2 diabetes: impacts from pathogenesis to lifestyle modifications. Current Issues in Molecular Biology, 45(8), 66516666.
  • Chidambaram, S. B., Anand, N., Varma, S. R., Ramamurthy, S., Vichitra, C., Sharma, A., ... & Essa, M. M. (2024). Superoxide dismutase and neurological disorders. IBRO Neuroscience Reports, 16, 373-394.
  • Cui, X., Wang, Y., Liu, H., Shi, M., Wang, J., & Wang, Y. (2022). The molecular mechanisms of defective copper metabolism in diabetic cardiomyopathy. Oxidative Medicine and Cellular Longevity, 2022.
  • Davis, C. D. (2003). Low dietary copper increases fecal free radical production, fecal water alkaline phosphatase activity and cytotoxicity in healthy men. The Journal of nutrition, 133(2), 522-527.
  • Freeland-Graves, J. H., Sachdev, P. K., Binderberger, A. Z., & Sosanya, M. E. (2020). Global diversity of dietary intakes and standards for zinc, iron, and copper. Journal of Trace Elements in Medicine and Biology, 61, 126515.
  • Fujita, T., Hemmi, S., Kajiwara, M., Yabuki, M., Fuke, Y., Satomura, A., & Soma, M. (2013). Complement-mediated chronic inflammation is associated with diabetic microvascular complication. Diabetes/metabolism research and reviews, 29(3), 220-226.
  • González-Domínguez, Á., Millán-Martínez, M., Domínguez-Riscart, J., Mateos, R. M., Lechuga-Sancho, A. M., & González-Domínguez, R. (2022). Altered metal homeostasis associates with inflammation, oxidative stress, impaired glucose metabolism, and dyslipidemia in the crosstalk between childhood obesity and insulin resistance. Antioxidants, 11(12), 2439.
  • Hasanato, R. M. (2020). Trace elements in type 2 diabetes mellitus and their association with glycemic control. African Health Sciences, 20(1), 287-293.
  • Jomova, K., Makova, M., Alomar, S. Y., Alwasel, S. H., Nepovimova, E., Kuca, K..... & Valko, M. (2022). Essential metals in health and disease. Chemico-biological interactions, 367, 110173.
  • Jomova, K., Raptova, R., Alomar, S. Y., Alwasel, S. H., Nepovimova, E., Kuca, K., & Valko, M. (2023). Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Archives of toxicology, 97(10), 2499-2574.
  • Kant, R., Verma, V., Patel, S., Chandra, R., Chaudhary, R., Shuldiner, A. R., & Munir, K. M. (2021). Effect of serum zinc and copper levels on insulin secretion, insulin resistance and pancreatic p cell dysfunction in US adults: findings from the National Health and nutrition examination survey (NHANES) 2011-2012. Diabetes Research and Clinical Practice, 172, 108627.
  • Leliévre, P., Sancey, L., Coll, J. L., Deniaud, A., & Busser, B. (2020). The multifaceted roles of copper in cancer: A trace metal element with dysregulated metabolism, but also a target or a bullet for therapy. Cancers, 12(12), 3594.
  • Linder, M. C. (2020). Copper homeostasis in mammals, with emphasis on secretion and excretion. A review. International journal of molecular sciences, 21(14), 4932.
  • Maung, M. T., Carlson, A., Olea-Flores, M., Elkhadragy, L., Schachtschneider, K. M., Navarro-Tito, N., & Padilla-Benavides, T. (2021). The molecular and cellular basis of copper dysregulation and its relationship with human pathologies. The FASEB Journal, 35(9), e21810.
  • Mandal, T., Kar, S., Maji, S., Sen, S., & Gupta, A. (2020). Structural and functional diversity among the members of CTR, the membrane copper transporter family. The Journal of membrane biology, 253, 459-468.
  • Mazi, T. A., Shibata, N. M., & Medici, V. (2020). Lipid and energy metabolism in Wilson disease. Liver research, 4(1), 5-14.
  • Moon, N., Aryan, M., Westerveld, D., Nathoo, S., Glover, S., & Kamel, A. Y. (2021). Clinical manifestations of copper deficiency: a case report and review of the literature. Nutrition in Clinical Practice, 36(5), 1080-1085.
  • Naka, T., Kaneto, H., Katakami, N., Matsuoka, T. A., Harada, A., Yamasaki, Y..... & Shimomura, I. (2013). Association of serum copper levels and glycemic control in patients with type 2 diabetes. Endocrine journal, 60(3), 393-396.
  • Ong, K. L., Stafford, L. K., McLaughlin, S. A., Boyko, E. J., Vollset, S. E., Smith, A. E..... & Brauer, M. (2023). Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. The Lancet, 402(10397), 203-234.
  • Philbert, S. A., Schönberger, S. J., Xu, J., Church, S. J., Unwin, R. D., & Cooper, G. J. (2022). Elevated hippocampal copper in cases of type 2 diabetes. EBioMedicine, 86.
  • Rosa, A. C., Corsi, D., Cavi, N., Bruni, N., & Dosio, F. (2021). Superoxide dismutase administration: A review of proposed human uses. Molecules, 26(7), 1844.
  • Ruiz, L. M., Libedinsky, A., & Elorza, A. A. (2021). Role of copper on mitochondrial function and metabolism. Frontiers in molecular biosciences, 8, 711227.
  • Samadi, A., Isikhan, S. Y., Tinkov, A. A., Lay, I., Do§a, M. D., Skalny, A. V..... & Bj0rklund, G. (2020). Zinc, copper, and oxysterol levels in patients with type 1 and type 2 diabetes mellitus. Clinical nutrition, 39(6), 1849-1856.
  • Singh, A., Kukreti, R., Saso, L., & Kukreti, S. (2022). Mechanistic insight into oxidative stress-triggered signaling pathways and type 2 diabetes. Molecules, 27(3), 950.
  • Tanaka, A., Kaneto, H., Miyatsuka, T., Yamamoto, K., Yoshiuchi, K., Yamasaki, Y..... & Matsuhisa, M. (2009). Role of copper ion in the pathogenesis of type 2 diabetes. Endocrine journal, 56(5), 699-706.
  • Zhang, J., Duan, D., Song, Z. L., Liu, T., Hou, Y., & Fang, J. (2021). Small molecules regulating reactive oxygen species homeostasis for cancer therapy. Medicinal Research Reviews, 41(1), 342-394.
Еще
Статья обзорная