Role of exogenous proline in ameliorating salt stress at early stage in two rice cultivars

Автор: Deivanai S, Xavier R., Vinod V, Timalata K, Lim O.F.

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 4 т.7, 2011 года.

Бесплатный доступ

The study evaluated the effect of proline on germination and seedling growth of two Malaysian rice cultivars (MR220 and MR232) under salt stress. The exposure of rice seeds to increasing concentration of NaCl (0, 100, 200, 300 and 400 mM) had drastically affected germination (%), root and shoot length (mm), chlorophyll content and protein content. It is evident from the result of inhibition in germination rate, reduction in root and shoot length, chlorophyll content and protein content. However, several studies have shown that exogenous application of proline has ameliorated the negative effect of salt stress by regulating cellular osmotic balance. The present study has demonstrated that rice seeds pretreated with proline (1mM, 5mM and 10mM) and grown at different NaCl concentrations counteracted the adverse effect of salt. Pretreatment of proline at a concentration of 1mM was found to be effective and stimulated cellular activities, whereas 10mM proline was ineffective in improving plant growth under high level of salt (300 and 400mM NaCl).

Еще

Salt stress, exogenous proline, seed germination, seedling growth, rice

Короткий адрес: https://sciup.org/14323548

IDR: 14323548

Список литературы Role of exogenous proline in ameliorating salt stress at early stage in two rice cultivars

  • Abraham, E., Rigo, G., Szekely, G., Nagy, R., Konez, C. and Szabados, L. (2003). Light dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteriods in Arabidopsis. Plant Mol. Biol. 51: 363-372.
  • Alia-Mohanty, P. and Saradhi, P.P. (1992). Effect of sodium chloride on primary photochemical activities in cotyledonary leaves of Brassica juncia. Biochem Physiol. 188: 1-12.
  • Ali, G., Srivastava, P.S. and Iqbal, M. (1999). Proline accumulation, protein pattern and photosynthesis in regenerants grown under NaCl stress. Biol. Plant. 42: 89-95.
  • Ali, Q., Ashraf, M. and Athar, H.R. (2007). Exogenously applied proline at different growth stages enhances growth of two maize cultivars grown under water deficit conditions. Pak. J. Bot. 39(4): 1133-1144.
  • Amzallag, G.N. (2002). The adaptive potential of plant development: evidence from the response to salinity. In: Lauchli, A., Luttage, U. (Eds.), Salinity: Environment-Plant-Molecules, Kluwer, The Netherlands, 291-312.
  • Arafa, A.A., Khafagy, M.A. and El Banna, M.F. (2009). The effect of glycinebetaine or ascorbic acid on grain germination and leaf structure of shorghum plants grown under salinity stress. Australian J. of Crop Sci. 3(5) 297-304.
  • Ashraf, M. (1994). Organic substances responsible for salt tolerance in Eruca sativa. Biol. Plant 36: 255-259.
  • Ashraf, M. (2004). Some important physiological selection criteria for salt tolerance. Flora, 199: 361-376.
  • Ashraf. M. and Foolad, M.R. (2007). Roles of glycinebetaine and proline in improving plant abiotic stress tolerance. Environ. Expt. Bot. 59: 206-216.
  • Ashraf, M. and Harris, P.J.C. (2004). Potential Biochemical Indicators of salinity tolerance in palnts. Plant Sci. 166: 3-16.
  • Bates, L.S. (1973). Rapid determination of free proline for water stress studies. Plant and Soil 39, 205-207.
  • Bradford, M.M. (1976). A rapid and sensitive for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.
  • Cicek, N.and Cakirlar, H. (2008). Effect of salt stress on some physiological and photosynthetic parameters at three different temperatures in six soyabean (Glycine max L. Merr.) cultivars. J. of Agronomy and Crop Sci. 194: 34-46.
  • Chaum, S., Kirdmanee, C. and Supaibulwatane, K. (2004). Biochemical and physiological responses of Thai Jasmine rice (Oryza sativa L.Ssp. indica cv KDML 105) to salt stress. Sci. Asia. 30: 247-253.
  • Chen, W.P., Li, P.H. and Chen, T.H.H. (2000). Glycinebetaine increases chilling tolerance and reduces chilling induced lipid peroxidation in Zea mays. Plant Cell Environ. 23: 609-18.
  • Cuartero, J., Bolarin, M.C., Asins, M.J. and Moreno, V. (2006). Increasing salt tolerance in the tomato. J.Expt. Bot. 57 (5): 1045-1058.
  • De Lacerda, C.F., Cambraia, J., Oliva, M.A., Ruiz, H.A. and Tarquino Prisco, J. (2003). Solute accumulation and distribution during shoot leaf development in two sorghum genotypes under salt stress. Environ and Expt. Bot. 49: 107-120.
  • Dodd, G.L. and Donovan, L.A. (1999). Water potential and ionic effects on germination and seedling growth of two cold desert shrubs. American J Botany. 86: 1146-1153.
  • Epstein. E., Norlyn, J.D., Rush, D.W. and Kingsbury, R.W. (1980). Saline culture of crops: A genetic approach. Science. 210: 339-404.
  • Flexas J., Bota J., Loreto F., Cornic G.and Sharkey T.D. (2004). Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol. 6: 269-279.
  • Flexas, J., Diaz Espejo A., Galmes J., Kaldenhoff R., Medrano H. and Ribas Carbo M. (2007). Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves. Plant, Cell and Environment. 30: 1284-1298.
  • Flowers, T.J. (2004). Improving crop salt tolerance. J. of Expt. Botany. 55 (396): 307-319.
  • Green way H. and Munns, R. (1980). Mechanisms of salt tolerance in non halophytes. Annual Review of Plant Physiol. 31: 149-190.
  • Hanson, A.D and Hitz, W.D. (1982). Metabolic response of mesophytes to plant water deficits. Annual Review of Pant Physiol. 33: 163-203.
  • Hare, P.D., Cress, W.A. and Van Staden, J. (1999). Proline synthesis and degradation: a model system for elucidating stress related signal transduction. J. Exp. Bot. 50: 413-34.
  • Harborne, J.B. (1984). Phytochemical Methods. A Guide to Modern Techniques of Plant Analysis. London: Chapman & Hall.
  • Hernandez, J.A., Ferrer, M.A., Jimenez, A., Barcelo, A.R. and Sevilla, F. (2001). Antioxidant systems and O2/H2O2 production in the apoplast of pea leaves. Its relation with salt induced necrotic lesion in minor veins. Plant Physiol. 127: 817-831.
  • Hoque, M.A., Okuma, E., Banau, M.N.A. Nakamura, Y., Shimoishi, Y. and Murata, N. (2007). Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betain by increasing antioxidants enzyme activity. J.Plant Physiol. 64: 553-561.
  • Kavi Kishore, P.B., Hong, G.H. Miao, C.A.A. Hu and D.P.S. Verma. (1995). Overexpression of D1-pyrroline-5-carboxlate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol. 108: 1387-1394.
  • Le Rudulier, D. (2005). Osmoregulation in rhizobia: The key role of compatible solutes. Grain Legume 42, 18 -19.
  • Lichtenthaler, H.K., Langsdorf, G., Lenk, S. and Bushmann, C. (2005). Chlorophyll fluorescence imaging of photosynthetic activity with the flesh lamp fluorescence imaging system. Phtosynthetica. 43: 355-369.
  • Lin, C.C and Kao, C.H. (2001). Cell wall peroxidase against ferulic acid, lignin and NaCl reduced root growth of rice seedlings. J. Plant Physiology. 158: 667-671.
  • Makela, P., Kontturib, M., Pehua, E.and Somersaloa, S. (2002). Photosynthetic response to drought and salt stressed tomato and turnip rape plants to foliar applied glycinebetaine. Physiol. Plant. 105: 45-50.
  • Munns, R. (2002). Comparative physiology of salt and water stress. Plant Cell. Environ. 25: 239-250.
  • Munns, R. (2005). Genes and salt tolerance: bringing them together. New Phytol. 167: 645-63.
  • Munns, R., Schachtman, D.P and Condon, A.G. (1995). The significance of two phase growth response to salinity in wheat and barley. Australian J. Plant Physiol. 22: 561-596.
  • Mussig, C., Fischer, S. and Altamann, T. (2002). Brassinosteroid-regulated gene expression. Plant Physiol. 129, 1241-1251.
  • Niu, X., Bressan, R.A., Hasegwa, P.M. and Pardo, J.M. (1995). Ion homeostasis in NaCl stress environments. Plant Physiol. 109: 735-742.
  • Noctor, G. and Foyer, C.H. (1998). Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 249-279.
  • Okcu, G., Kaya, M.D. and Atak, M. (2005). Effects of salt and drought stresses on germination and seedling growth of pea (Pisum sativum L.). Turkish journal of Agriculture and forestry. 29: 237-242.
  • Okuma, E., Soeda, K., Tada, M. and Murata, Y. (2000). Exogenous proline mitigates the inhibition of growth of Nicotiana tabacum culturedcell under saline conditions. Soil Sci. and Plant Nutri. 46: 257-263
  • Okuma, E., Murakami, Y., Shimoishi, Y., Tada, M. and Murata, Y. (2004). Effects of exogenous application of proline and betaine on the growth of tobacco cultured cells under saline conditions. Soil and Plant Nutrition. 50: 1301-1305.
  • Ozdemir, F., Bor, M., Demiral, T. and Turkan I. (2004). Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation proline content and antioxidative system of rice (Oryza sativa L.) under salinity stress. Plant Growth Regulation 42, 203-211.
  • Parida, A.K. and Das, A.B. (2005). Salt tolerance and salinity effects on plants: A review. Ecotoxicol. Environ. Safety, 60(3): 324-349.
  • Rahman, S. Md., Miyake, H. and Takeoka, Y. (2002). Effects of exogenous glycinebetaine on growth and ultra structure of salt stressed rice seedlings (Oryza sativa L.) Plant Prod. Sci. 5: 33-44.
  • Raza, S.H., Athar, H.R. and Ashraf, M. (2006). Influence of exogenously applied glycinebetaine on the photosynthetic capacity of two differently adapted wheat cultivars under salt stress. Pak. J. Bot. 38(2): 341-351.
  • Rontein, D., Basset, G. and Hanson, A.D. (2002). Metabolic engineering of osmoprotectant accumulation in plants. Metabolic Engineering, 49-56.
  • Sairam, R.K. and Tyagi, A. (2004). Physiology and molecular biology of salinity stress tolerance in plants. Current Sci. 86 (3): 407-421.
  • Saranga, Y., Rhodes, D. and Janick, J. (1992). Changes in amino acid composition associated with tolerance to partial desiccation of celery somatic embryos. J. Amer. Soc. Hort. Sci. 117: 337-341.
  • Serraj, R. and Sinclair, T.R. (2002). Osomlyte accumulation:can it really help increase crop yield under drought conditions? Plant Cell Environ. 25: 333-341.
  • Sharkey, T.D., Carl, J.B., Graham, D.F. and Singsaas, E.L. (2007). Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell Environ. 30: 1035-1040.
  • Shereen, A., Ansari, R.U., Yamin, S., Raza, S., Mumtaz, S., Khan, M.A. and Mujtaba, S.M. (2007). Physiological responses of rice (Oryza sativa L.) to saline stress. Pak. J. Bot., 39: 2527-2534.
  • Qayyum, B., Shahbaz, M. and Akram, N.A. (2007). Effect of 24-epibrassinolide on salt tolerance of wheat. International Journal of Agriculture and Biology 9, 584-589.
  • Zeinali, E., Soltani, A. and Galeshi, S. (2002). Response of germination component to salinity stress in oilseed rape (Brassica napus L.). Iranian J. of Agric. Sci. 33: 137-145.
  • Zhu, J.K. (2001). Plant salt tolerance. Trends in Plant Sci. 6: 66-71.
Еще
Статья научная