Role of heat shock proteins and plasma membrane on thermotolerance in Saccharomyces cerevisiae-VS3 strain

Автор: Pasha Shaik Muzammil, Musfera Shaik, Venkateswar Rao L., Pasha Chand

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 2 т.19, 2023 года.

Бесплатный доступ

Aim: Study of HSPs synthesis after heat and cold shock and explanation of thermotolerance by the transport of HSPs to the plasma membrane. Methods and Results: Physical (cold and heat shock) and chemical (lignocaine) damage to plasma membrane was achieved in thermotolerant and mesophilic strains of Saccharomyces cerevisiae . In shocked yeasts K+ ion efflux, leakage of UV280 absorbing material, HSP expression profile and viability at 25 and 45°C were studied. Physical/chemical shock was given for 30 minutes and subsequently yeasts were incubated at 25°C to avoid further membrane damage by stress. In thermotolerant strain, membrane damage increased up to 70 minutes (30 min of shock and 40 min at 25°C) and reduced thereafter. De-novo HSPs in membrane were noted at 60 minutes and reached maximum at 80 minutes in thermotolerant strain. In mesophilic yeast, de-novo HSPs were not synthesized and leakage was continuous up to the studied period (100 minutes). Conclusion: These de-novo HSPs are transported to the membrane for restoring the membrane integrity and to prevent the leakage. The thermotolerant strain can grow at higher temperatures compared to mesophilic strain due to more production of HSPs and HSP associated membrane damage reversal. Significance and Impact of the Study: Several reports established the role of HSPs in thermotolerance but their mode of action is not well characterized. The current method explains the mechanism for acquiring thermotolerance in yeast.

Еще

Saccharomyces cerevisiae, vs3, heat shock proteins, hsp 104, thermotolerance, cold shock

Короткий адрес: https://sciup.org/143180109

IDR: 143180109

Список литературы Role of heat shock proteins and plasma membrane on thermotolerance in Saccharomyces cerevisiae-VS3 strain

  • Banat I.M., Singh D., Nigam P. and Marchant R. (2000) Potential use of thermotolerant fermentative yeasts for industrial ethanol production. Rec. Adv. in Food Sci. 1, 41-55.
  • Castells-Roca L, García-Martínez J, Moreno J, Herrero E, Belli G, Pérez-Ortín JE. Heat shock response in yeast involves changes in both transcription rates and mRNA stabilities. PLoS One. 2011 25;6,2
  • Chatterjee M.T. , Khalawan S.A. and Curran B.P.G. (1997) Alterations in cellular lipids may be responsible for the transient nature of the yeast heat shock response. Microbiol., 143, 3063-3068.
  • Coss A. R., Storck W. C., Daskalakis C., Berd D. and Miriam Wahl L. (2003) Intracellular Acidification Abrogates the Heat Shock Response and Compromises Survival of Human Melanoma Cells. Mol Can Ther,2, 383- 388.
  • Fujita K. and Kubo I. (2002) Plasma membrane injury induced by nonyl gallate in Saccharomyces cerevisiae J Appl Microbiol., 99,1035-1042.
  • Hanninen A.-L., Simola M., Saris N. and Makarow M. (1999) The Cytoplasmic Chaperone Hsp104 is Required for Conformational Repair of Heat-denatured Proteins in the Yeast Endoplasmic Reticulum. Mol. Biol. Cell., 11, 3623- 3632.
  • Heipeiper H.J., Meulenbeld G., Oirschot Q. and deBont J.A.M. (1996) Effect of environmental factors on the trans/cis ratio of unsaturated fatty acids in
  • Pseudomonas putida S12. Appl. Environ. Microbiol., 62, 6665-6670.
  • Kaul SC, Obuchi K, Iwahashi H, Komatsu Y. (1992) Cryoprotection provided by heat shock treatment in Saccharomyces cerevisiae. Cell Mol Biol. 38(2):135-43.
  • Kaul S.C., Obuchi K., Iwahashi H. and Komatsu Y. (1992) Cryoprotection provided by heat shock treatment in Saccharomyces cerevisiae. Cell Mol. Biol., 38, 135-43.
  • Kumar A., Sharma S., Chunduri V. Kaur A, Kaur S, Malhotra N, Kumar A, Kapoor P, Kumari A, Kaur J, Sonah H & Garg M. (2020) Genome-wide Identification and Characterization of Heat Shock Protein Family Reveals Role in Development and Stress Conditions in Triticum aestivum L.. Sci Rep, 10, 7858.
  • Le Breton L. and Mayer M.P. (2016) Heat Shock Response: A model for handling cell stress eLife 5:e22850.
  • Lindquist S. and Kim G .(1996) Heat-Shock Protein 104 Expression is Sufficient for Thermotolerance in Yeast. Proc Natl Acad Sci., 93, 5301-5306.
  • Lloyd D. Morrell S., Carlsen H.N., Degn,H., James P.E. and Rowlands C.C. (1993) Effects of growth with ethanol on fermentation and membrane fluidity of Saccharomyces cerevisiae. Yeast, 9, 825-833.
  • Lowry O.H., Rosebrough N.J., Farr A.L. and Randall R.L. (1951) Protein measurement with the Folin Phenol Reagent. J. Biol. Chem., 193, 265.
  • Mizogami M., Tsuchiya H., and Harada J. (2002) Membrane effects of Ropivacaine compared with those of Bupivacaine and Mepivacaine. Fundam. Clin. Pharmacol., 16, 325-330.
  • Mühlhofer M., Berchtold E., Stratil C. G., Csaba G., Kunold E., Bach N.C., Sieber S.A., Haslbeck M., Zimmer R., & Buchner J. (2019). The heat shock response in yeast maintains protein homeostasis by chaperoning and replenishing proteins. Cell reports, 29(13), 4593-4607.
  • Parsell D.A. and Lindquist S. (1993) The function of heat shock proteins in stress tolerance: Degradation and reactivation of damaged proteins. Annu. Rev. Genet., 27, 437-496.
  • Patriarca E.J. and Maresca B. (1990) Acquired thermotolerance following heat shock protein synthesis prevents impairment of mitochondrial ATPase activity at elevated temperatures in Saccharomyces cerevisiae. Exp. Cell Res., 190, 57 - 64.
  • Piper PW, Ortiz-Calderon C, Holyoak C, Coote P. and Cole M. (1997) Hsp30,the integral plasma membrane heat shock protein of Saccharomyces cerevisiae, is a stress- inducible regulator of plasma membrane H(+)-ATPase. Cell Stress Chaperones., 2, 12-24.
  • Polla B.S. , Dwight R.M.J., Robinson R. and Maresca B. (1997) Effetcs of membrane fatty acids on thermal and oxidative injury in the human premonocytic line U937. Biochem. Pharmacol., 54, 773-780.
  • Prado C.D., Mandrujano G.P.L., Souza J.P. et al. (2020) Physiological characterization of a new thermotolerant yeast strain isolated during Brazilian ethanol production, and its application in high-temperature fermentation. Biotechnol Biofuels, 13, 178 .
  • Sambrook J., Fritsch E.F. and Maniatis T. (1989) Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring HarborLaboratory, Cold Spring Harbor, NY.
  • Sanchez Y., Parsell D. A., Taulien J., Vogel J. L., Craig E. A., S Lindquist S. (1993). Genetic evidence for a functional relationship between Hsp104 and Hsp70. Journal of Bacteriology, 175(20), 6484-6491.
  • Santos E., Villanueva J.R., and Sentandrem R. (1978) The plasma membrane of Saccharomyces cerevisiae. Isolation and some properties. Biochem et Biophys Acta (BBA)-Biomem., 508, 39-54.
  • Sikkema J., De Bont J.A. and Poolman B. (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Rev., 59, 201-222.
  • Silva, J.T., Vericimo, M.A., Floriano, W.B., Dutra, M.B. and Panek, A.D. (1994) On the Hsp 26 of Saccharomyces cerevisiae. Biochem. Mol. Biol. Int. , 33, 211-220.
  • Sree N.K., Sridhar M., Suresh K., Banat I.M., & Rao L.V. (2000). Isolation of thermotolerant, osmotolerant, flocculating Saccharomyces cerevisiae for ethanol production. Bioresource Technology, 72(1), 43-46.
  • Steels E.L., Learmonth R.P. and Watson K. (1994) Stress tolerance and membrane lipid unsaturation in Saccharomyces cerevisiae grown aerobically or anaerobically. Microbiol., 40, 569-576.
  • Suutari M., Liukkonen K. and Laakso S. Temperature adaptation in yeast : The role of fatty acids. J. Gen. Microbiol. 1990, 136, 1469-1474.
  • Trinklein N.D., Murray J.I, Hartman S.J., Botstein. D. and Myers R.M. (2004) The Role of Heat Shock Transcription Factor 1 in the Genome-wide Regulation of the Mammalian Heat Shock Response. Mol Biol Cell., 15, 1254-1261.
  • Ueda I. Tashiro C. and Arakawa K. (1977) Depression of phase transition temperature in a model cell membrane by local anesthetics. Anesthesiology., 46, 327-332.
  • Verghese J, Abrams J, Wang Y, Morano KA. (2012) Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiol Mol Biol Rev. 76(2):115-58.
  • Vigh L., Maresca B., and Harwood J.L. (1998) Does the Membrane's Physical State Control the Expression of Heat Shock and Other Genes? TIBS, 23, 369374.
  • Williams D.E., Swango L. J., Wilt G. R. and Worley S. D. (1991) Effect of organic N-halamines on selected membrane functions in intact Staphylococcus aureus cells. Appl. Environ. Microbiol., 57, 11211127.
Еще
Статья научная