Role of nitric oxide in regulation of H2O2 mediating tolerance of plants to abiotic stress: a synergistic signaling approach

Автор: Mohd Mazid, Taqi Ahmed Khan, Firoz Mohammad

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 2 т.7, 2011 года.

Бесплатный доступ

The relationship between abiotic stress, nitric oxide (NO) and Hydrogen peroxide (H2O2) is a challenging one. It is now clear that H2O2 and NO function as signaling molecules in plants. A wide range of abiotic stresses results in H2O2 generation, from a variety of sources and it has many essential roles in plant metabolism but at the same time, accumulation related to virtually any environmental stress is potentially damaging. NO is gaining increasing attention as a regulator of diverse pathophysiological processes in plant science, mainly due to its properties (free radicals, small size, no charge, short-lived, and highly diffusible across biological membranes) and multifunctional roles in plant growth, development and regulation of remarkably broad myriad of plant cellular mechanisms. Various abiotic stresses can induce NO synthesis, but its origin and mode of action in plants have not yet been completely resolved. Recent studies on NO production have tended to high light the questions that still remain unanswered rather than telling us more about NO metabolism. But regarding NO-H2O2 signaling and functions, new findings have given an impression of the intricacy of NO-H2O2 related signaling networks against abiotic stresses. Cellular responses to NO-H2O2 are complex, with considerable cross-talk between responses to several abiotic stresses. In last few years, the role of NO in H2O2 mediating tolerance in plants to abiotic stress has established much consideration.

Еще

Antioxidant, h2o2, no, oxidative stress, salinity, signaling molecules, uv-radiation

Короткий адрес: https://sciup.org/14323961

IDR: 14323961

Список литературы Role of nitric oxide in regulation of H2O2 mediating tolerance of plants to abiotic stress: a synergistic signaling approach

  • Abogadallah, G.M. (2010). Antioxidative defense under salt stress. Plant Signal. Behav., 5(4): 369-374.
  • Agrawal, G.K., Iwahashi, H., Rakwal, R. (2003a). Rice MAPKs. Biochem. Biophys. Res. Commun., 302: 171-180.
  • Agrawal, G.K., Jwa, N.S., Agrawal, S.K., Tamogami, S., Iwahashi, H., Rakwal, R. (2003b). Cloning of novel rice allene oxide cyclise (OsAOC): mRNA expression and comparative analysis with allene oxide synthase (OsAOS) gene provide insight into the transcriptional regulation of octadecanoid pathway biosynthetic genes in rice. Plant Sci., 164: 979-992.
  • Agrawal, G.K., Tamogami, S., Iwahashi, H., Agrawal, V.P., Rakwal, R. (2003c). Transient regulation of jasmonic acid-inducible rice MAP kinase gene (OsBWMK1) by diverse biotic and abiotic stresses. Plant Physiol. Biochem., 41: 355-361.
  • Alaoui-Sosse, B., Genet, P., Vinit-Dunand, F., Toussaint, M.L., Epron, D., Badot, P.M. (2004). Effect of copper on growth in cucumber plants (Cucumis sativus) and its relationships with carbohydrate accumulation and changes in ion contents. Plant Sci., 166: 1213-1218.
  • Allan, A.C., Fluhr, R. (1997). Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells. Plant Cell, 9: 1559-1572.
  • Alscher, R., Donahue, J., Cramer, C.L. (1997). Reactive oxygen species and antioxidants: Relationships in green cells. Physiologia Plantarum, 100: 224-233.
  • Alvarez, M.E., Pennell, R.I., Meijer, P.J., Ishkawa, A., Dixon, R.A., Lamb, C. (1998). Reactive oxygen species intermediates mediate a systemic signal network in the establishment of plant immunity. Cell, 92: 773-784
  • An, L.Z., Liu, Y.H., Zhang, M.X. (2005). Effect of nitric oxide on growth of maize seedling leaves in the presence or absence of ultraviolet-B radiation. J. Plant Physiol., 162: 317-326.
  • Apel, K., Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55: 373-399.
  • Apostolova, P., Yordanova, R., Popova, L. (2008). Response of antioxidative defence system to low temperature stress in two wheat cultivars. Gen. Appl. Plant Physiology, 34: 281-294.
  • Arasimowicz, M., Floryszak-Wieczorek, J. (2007). Nitric oxide as a bioactive signalling molecule in plant stress responses. Plant Sci., 172: 876-887.
  • Arasimowicz-Jelonek, M., Floryszak-Wieczorek, J., Kubis, J. (2009). Interaction between polyamine and nitric oxide signalling in adaptive responses to drought in cucumber. J. Plant Growth Regul., 28: 177-186.
  • Asada, K. (1999). The water-water cycle in chloroplasts: scavenging of active oxygens and issipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol., 50: 601-639.
  • Asada, K. (2006). Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol., 141: 391-396.
  • Avsian, K.O., Gueat, D.Y., Lev, Y.S., Gollop, R., Ben, H.G. (2004). The salt stress signal transduction pathway that activates the gpxl promoter is mediated hy intracellular H2O2, different from the pathway induced by extracellular H2O2. Plant Physiol., 135(3): 1685-1696.
  • Ballare, C.L., Rousseaux, M.C., Searles, P.S., Zaller, J.G., Giordano, C.V., Robson, T.M., Caldwell, M.M., Sala, O.E., Scopel, A.L. (2001). Impacts of solar ultraviolet-B radiation on terrestrial ecosystems of Tierra del Fuego (southern Argentina). An overview of recent progress. J. Photochem. Photobiol. B: Biol., 62: 67-77.
  • Ballare, C.L., Scopel, A.L., Stapleton, A.E., Yanovsky, M.J. (1996). Solar ultraviolet-B radiation affects seedling emergence, DNA integrity, plant morphology, growth rate, and attractiveness to herbivore insects in Datura ferox. Plant Physiol., 112: 161-170.
  • Bartosz, G. (1997). Oxidative stress in plants. Acta Physiol. Plant, 19: 47-64.
  • Beligni, M.V., Fath, A., Bethke, P.C., Lamattina, L., Jones, R.L. (2002). Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers. Plant Physiol., 129: 1642-1650.
  • Beligni, M.V., Lamattina, L. (1999a). Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues. Planta, 208: 337-344.
  • Beligni, M.V., Lamattina, L. (1999b). Is nitric oxide toxic or protective? Trends Plant Sci., 4: 299-300.
  • Beligni, M.V., Lamattina, L. (2000). Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three lightinducible responses in plants. Planta, 210: 215-221.
  • Beligni, M.V., Lamattina, L. (2001). Nitric oxide in plants: the history is just beginning. Plant Cell Environ., 24: 267-278.
  • Bethke, P.C., Badger, M.R., Jones, R.L. (2004). Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell, 16: 332-341.
  • Bethke, P.C., Libourel, I.G.L., Aoyama, N., Chung, Y., Still, D.W., Jones, R.L. (2007). The Arabidopsis thaliana aleurone layer responds to nitric oxide, gibberellin and abscisic acid and is sufficient and necessary for seed dormancy. Plant Physiol., 143: 1173-1188.
  • Bethke, P.C., Libourel, I.G.L., Jones, R.L. (2006). Nitric oxide reduces seed dormancy in Arabidopsis. J. Exp. Bot., 57: 517-526.
  • Bhattacharjee, S. (2005). Reactive oxygen species and oxidative burst: Roles in stress, senescence and signal transduction in plants. Current Sci., 89: 7-15.
  • Bhattacharjee, S. (2009). Involvement of calcium and calmodulin in oxidative and temperature stress of Amaranthus lividus L. during early germination. J. Environ. Biol., 30(4): 557-562.
  • Bolwell, G.P. (1999). Role of reactive oxygen species and NO in plant defence responses. Curr. Opin. Plant Biol., 2: 287-294.
  • Bolwell, G.P., Bindschedler, L.V., Blee, K.A., Butt, V.S., Davies, D.R., Gardner, S.L., Gerrish, C., Minibayeva, F. (2002). The apoplastic oxidative burst in response to biotic stress in plants: a threecomponent system. Journal of Experimental Botany, 53: 1367-1376.
  • Bolwell, G.P., Woftastek, P. (1997). Mechanism for the generation of reactive oxygen species in plant defense-Broad perspective. Physiol. Mol. Plant Pathol., 51: 347-349.
  • Bouchard, J.N., Yamasaki, H. (2008). Heat stress stimulates nitric oxide production in symbiodinium microadriaticum: a possible linkage between nitric oxide and the coral bleaching phenomenon. Plant Cell Physiol., 49: 641-652.
  • Bouchard, J.N., Yamasaki, H. (2009). Implication of nitric oxide in the heat-stress-induced cell death of the symbiotic alga Symbiodinium microadriaticum. Marine Biol., 156: 2209-2220.
  • Bowler, C., Fluhr, R. (2000). The role of calcium and activated oxygen as signals for controlling cross-tolerance. Trends Plant Sci., 5: 241-246.
  • Bray, E.A. (1993). Molecular responses to water deficit. Plant Physiol., 103: 1035-1040.
  • Bright, J., Desikan, R., Hancock, J.T., Weir, I.S., Neill, S.J. (2006). ABA induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J., 45: 113-122.
  • Browse, J., Xin, Z.H. (2001). Temperature sensing and cold acclimation. Curr. Opin. Plant Biol., 4(3): 241-246.
  • Caldwell, M.M., Ballare, C.L., Flint, S.D., Bjorn, L.O., Teramura, A.H., Kulandaivelu, G., Tevini, M. (2003). Terrestrial ecosystems, increased solar ultraviolet radiation and interactions with other climatic change factors. Photochem. Photobiol. Sci., 2: 29-38.
  • Casati, P., Walbot, V. (2003). Gene expression profiling in response to ultraviolet radiation in maize genotypes with varying flavonoid content. Plant Physiol., 132: 1739-175.
  • Chaudhury, S., Panda, S.K. (2004). Induction of oxidative stress and ultrastructural changes in moss Taxithelium napalense (Schwaegr) Broth under lead (Pb) and arsenic (As) phytotoxicity. Current Sci.
  • Chen, S.X., Schopfer, P. (1999). Hydroxylradical production in physiological reactions. A novel function of peroxidase. Eur. J. Biochem., 260: 726-735.
  • Cheng, Y.L., Song, C.P. (2006). Hydrogen peroxide homeostasis and signalling in plant cells. Sci. China Ser. C Life Sci., 49(1): 1-11.
  • Chinnusamy, V., Jagendorf, A., Jhu, J.K. (2005). Understanding and improving salt tolerance in plants. Crop Sci., 45: 437-448.
  • Cho, U.H., Park, J.O. (2000). Mercury-induced oxidative stress in tomato seedlings. Plant Sci., 156: 1-9.
  • Cho, U.H., Seo, N.H. (2005). Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Sci., 168: 113-120.
  • Corpas, F.J., Barroso, J.B., Carreras, A., Quiros, M., Leon, A., Romero-Puertas, M.C., Esteban, F.J., Valderrama, R., Palma, J.M., Sandalio, L.M., et al. (2004). Cellular and subcellular localization of endogenous nitric oxide in young and senescent pea plants. Plant Physiol., 136: 2722-2733.
  • Crawford, N.M., Guo, F.Q. (2005). New insights into nitric oxide metabolism and regulatory functions. Trends Plant Sci., 10: 195-200.
  • Cui, X., Zhang, Y., Chen, X., Jin, H., Wu, X. (2009). Effects of exogenous nitric oxide protects tomato plants under copper stress. Bioinformatics and Biomedical Engineering. 3rd International Conference, Beijing, pp. 1-7.
  • Dangl, J.L., Jones, J.D.G. (2001). Plant pathogens and integrated defense responses to infection. Nature, 411: 826-833.
  • Dat, J.F., Vandenabeele, S., Vranova, E., Van, M.M., Inze, D., VanBreusegem, F. (2000). Dual action of the active oxygen species during plant stress responses. Cell Mol. Life Sci., 57: 779-795.
  • Delaunay, A., Pflieger, D., Barrault, M.B., Vinh, J., Toledano, M.B. (2002). A thiol peroxidase is an H2O2 receptor and redox-transducer in gene activation. Cell, 111: 471-481.
  • Delledonne, M. (2005). NO news is good news for plants. Curr. Opin. Plant Biol., 8: 390-396.
  • Delledonne, M., Zeier, J., Marocco, A., Lamb, C. (2001). Signal interactions between nitric nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc. Natl. Acad. Sci. USA., 98: 13454-13459.
  • Demirevska-Kepova, K., Simova-Stoilova, L., Stoyanova, Z., Holzer, R., Feller, U. (2004). Biochemical changes in barley plants after excessive supply of copper and manganese. Environ. Exp. Bot., 52: 253-266.
  • Desikan, R., Mackerness, S., Hancock, J.T., Neill, S.J. (2001). Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol., 127: 159-172.
  • Desikan, R., Neill, S.J., Hancock, J.T. (2000). Hydrogen peroxideinduced gene expression in Arabidopsis thaliana. Free Rad. Biol. Med., 5: 773-778.
  • Desikan, R., Reynolds, A., Hancock, J.T., Neill, S.J. (1998). Harpin and hydrogen peroxide both initiate programmed cell death but have differential effects on gene expression in Arabidopsis suspension cultures. Biochem. J., 330: 115-120.
  • Dietz, K.J., Baier, M., Kramer, U. (1999). Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants. In Prasad, M.N.V., Hagemeyer, J. (ed.), Heavy metal stress in plants from molecules to ecosystems. Berlin:Springer-Verlag, pp. 73-97.
  • Doke, N. (1997). The oxidative burst: role in signal transduction and plant stress. In Scandalios, J.G. (ed.), Oxidative Stress and the Molecular Biology of Antioxidant Defenses, Cold Spring Harbor Laboratory Press, New York, pp. 785-813.
  • Dong, Lu., Zhang, X., Jiang, J., An, G.Y., Zhang, L.R., Song, C.P. (2005). NO may function in the downstream of H2O2 in ABA-induced stomatal closure in Vicia faba L. Journal of Plant Physiology and Molecular Biology, 31: 62-70.
  • Drazkiewicz, M., Skorzynska-Polit, E., Krupa, Z. (2004). Copper induced oxidative stress and antioxidant defence in Arabidopsis thaliana. BioMetals, 17: 379-387.
  • Durner, J., Klessig, D.F. (1999). Nitric oxide as signal in plants. Curr. Opin. Plant Biol., 2: 369-374.
  • Fan, H., Guo, S., Jiao, Y., Zhang, R., Li, J. (2007). Effects of exogenous nitric oxide on growth, active oxygen species metabolism, and photosynthetic characteristics in cucumber seedlings under NaCl stress. Front. Agri. China, 1: 308-314.
  • Flowers, T.J., Yeo, A.R. (1995). Breeding for salinity resistance in crop plants-where next? Aust. J. Plant. Physiol., 22: 875-884.
  • Foreman, J., Demidchik, V., Bothwell, J.H., Mylona, P., Miedema, H., Torres, M.A., Linstead, P., Costa, S., Brownlee, C., Jones, J.D. et al. (2003). Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature, 422: 442-446.
  • Foyer, C.H., Lopez-Delgado, H., Dat, J.F., Scott, I.M. (1997). Hydrogen peroxide and glutathione-associated mechanisms of acclamatory stress tolerance and signalling. Physiol. Plant., 100: 241-254.
  • Foyer, C.H., Noctor, G. (1999). Leaves in the dark see the light. Science, 284: 599-601.
  • Foyer, C.H., Noctor, G. (2003). Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol. Plant., 119: 355-364.
  • Garcia-Mata, C., Lamattina, L. (2001). Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol., 126: 1196-1204.
  • Garcia-Mata, C., Lamattina, L. (2007). Abscisic acid (ABA) inhibits light-induced stomatal opening through calcium-and nitric oxide-mediated signalling pathways. Nitric Oxide, 17: 143-151.
  • Garcia-Mata, C., Wang, J., Gajdanowicz, P., Gonzalez, W., Hills, A., Donald, N., Riedelsberger, J., Amtmann, A., Dreyer, I., Blatt, M.R. (2010). A minimal cysteine motif required to activate the SKOR K+ channel of Arabidopsis by the reactive oxygen species H2O2. J. Biol. Chem., 285(38): 29286-29294.
  • Garreton, V., Carpinelli, J., Jordana, X., Holuigue, L. (2002). The as-1 promoter element is an oxidative stress-responsive element and salicylic acid activates it via oxidative species. Plant Physiol., 130: 1516-1526.
  • Gechev, T., Gadjev, I., Van, B.F., Inze, D., Dukiandjiev, S., Toneva, V., Minkov, I. (2002). Hydrogen peroxide protects tobacco from oxidative stress by inducing a set of antioxidant enzymes. Cell Mol. Life Sci., 59(4): 708-714.
  • Ghezzi, P., Bonetto, V. (2003). Redox proteomics: Identification of oxidatively, modified proteins. Proteomics, 3: 1145-1153.
  • Ghoshroy, S., Freedman, K., Lartey, R., Citovsky, V. (1998). Inhibition of plant viral systemic infection by non-toxic concentration of cadmium. Plant J., 13: 591-602.
  • Glazener, J.A., Orlandi, E.W., Baker, C.J. (1996). The active oxygen response of cell suspensions to incompatible bacteria is not sufficient to cause hypersensitive cell death. Plant Physiol., 110: 759-763.
  • Gould, K.S., Lamotte, O., Klinguer, A., Pugin, A., Wendehenne, D. (2003). Nitric oxide production in tobacco leaf cells: a generalized stress response? Plant Cell Environ., 26: 1851-1862.
  • Guan, L.M., Zhao, J., Scandalios, J.G. (2000). Ciselements and trans-factors that regulate expression of the maize Cat1 antioxidant gene in response to ABA and osmotic stress: H2O2 is the likely intermediary signalling molecule for the response. Plant J., 22: 87-95.
  • Guo, F.Q., Crawford, N.M. (2005). Arabidopsis nitric oxide synthase1 is targeted to mitochondria and protects against oxidative damage and dark-induced senescence. Plant Cell, 17: 3436-3450.
  • Guo, F.Q., Okamoto, M., Crawford, N.M. (2003). Identification of a plant nitric oxide synthase gene involved in hormonal signalling. Science, 302: 100-103.
  • Guo, Y., Tian, Z., Yan, D., Zhang, J., Qin, P. (2009). Effects of nitric oxide on salt stress tolerance in Kosteletzkya virginica. Life Sciences J., 6: 67-75.
  • Hall, J.L. (2002). Cellular mechanism for heavy metal detoxification and tolerance. Journal of Experimental Botany, 53(366): 1-11.
  • Halliwell, B., Clement, M., Long, L. (2000). Hydrogen peroxide in the human body. FEBS Letters, 486: 10-13.
  • Halliwell, B., Gutteridge, J. (1999). Free Radicals in Biology and Medicine (3rd Edn), Oxford University Press, Oxford.
  • Hao, G.P., Xing, Y., Zhang, J.H. (2008). Role of nitric oxide dependence on nitric oxide synthase-like activity in the water stress signalling of maize seedling. J. Integr. Plant Biol., 50: 435-442.
  • Hasegawa, P.M., Bressan, R.A., Zhu, J.K., Bohnert, H.J. (2000). Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol., Biol., 51: 463-499.
  • He, J.M., Xu, H., She, X.P., Song, X.G., Zhao, W.M. (2005). The role and the interrelationship of hydrogen peroxide and nitric oxide in the UV-B-induced stomatal closure in broad bean. Funct. Plant Biol., 32: 237-247.
  • Hess, D.T., Matsumoto, A., Kim, S.O., Marshall, H.E., Stamler, J.S. (2005). Protein S nitrosylation: purview and parameters. Nature Rev. Mol. Cell Biol., 6: 150-166.
  • Hill, A.C., Bennett, J.H. (1970). Inhibition of apparent photosynthesis by nitrogen oxides. Atmos. Environ., 4: 341-348.
  • Horvath, E., Pal, M., Szalai, G., Paldi, E., Janda, T. (2007). Exogenous 4-hydroxybenzoic acid and salicylic acid modulate the effect of short-term drought and freezing stress on wheat plants. Biol. Plant., 51: 480-487.
  • Hu, K.D., Hu, L.Y., Li, Y.H., Zhang, F.Q., Zhang, H. (2007). Protective roles of nitric oxide on germination and antioxidant metabolism in wheat seeds under copper stress. Plant Growth Regul., 53: 173-183.
  • Hu, X., Neill, S.J., Tang, Z., Cai, W. (2005). Nitric oxide mediates gravitropic bending in soybean roots. Plant Physiol., 137: 663-670.
  • Huang, X., Von Rad, U., Durner, J. (2002). Nitric oxide induces transcriptional activation of the nitric oxide-tolerant alternative oxidase in Arabidopsis suspension cells. Planta, 215: 914-923.
  • Huner, N.P.A., Oquist, G., Sarhan, F. (1998). Energy balance and acclimation to light and cold. Trends Plant Sci., 3(6): 224-230.
  • Ichinose, Y., Andi, S., Doi, R., Tanaka, R., Taguchi, F., et al. (2001). Generation of hydrogen peroxide is not required for harpin-induced apoptotic cell death in tobacco BY-2 cell suspension cultures. Plant Physiol. Biochem., 39: 771-776.
  • Ignarro, L.J. (2000). Nitric oxide, biology and pathobiology. Academic, San Diego.
  • Jeffrey, S.R., Snyder, S.H. (1995). Nitric oxide: a neural messenger. Annu. Rev. Cell Dev. Biol., 11: 417-440.
  • Jubany, M.T., Munne, B.S., Alegre, L. (2010). Redox regulation of water stress responses in field-grown plants. Role of hydrogen peroxide and ascorbate. Plant Physiol. Biochem., 48(5): 351-358.
  • Karin, M., Liu, Z., Zandi, E. (1997). AP-1 function and regulation. Curr. Opin. Cell Biol., 9: 240-246.
  • Karpinski, S., Reynolds, H., Karpinska, B., Wingsle, G., Creissen, G., Mullineaux, P. (1999). Systemic signalling and acclimation in response to excess excitation energy in Arabidopsis. Science, 284: 654-657.
  • Karplus, P.A., Daniels, M.J., Herriot, J.R. (1991). Atomic structure of ferredoxin-NadpC reductase, prototype for a structurally novel flavoenzyme family. Sci., 251: 60-66.
  • Khan, M.N., Siddiqui, M.H., Mohammad, F., Naeem, M., Khan, M.M.A. (2010). Calcium chloride and gibberellic acid protect Linseed (Linum usitatissimum L.) from NaCl stress by inducing antioxidative defence system and osmoprotectant accumulation. Acta Physiol. Plant., 32: 121-132.
  • Kim, J.A., Agrawal, G.K., Rakwal, R., Han, K.S., Kim, K.N., Yun, Ch.H., Heu, S., Park, S.Y., Lee, Y.H., Jwa, N.S. (2003). Molecular cloning and mRNA expression analysis of a novel rice (Oryza sativa L.) MAPK kinase kinase, OsEDR1, an ortholog of Arabidopsis AtEDR1, reveal its role in defense/stress signalling pathways and development. Bioch. Biophys. Res. Commun., 300: 868-876.
  • Kolbert, Z., Bartha, B., Erdei, L. (2005). Generation of nitric oxide in roots of Pisum sativum, Triticum aestivum and Petroselinum crispum plants under osmotic and drought stress. Acta Biol. Szegediensis, 49: 13-16.
  • Kopyra, M., Gwozdz, E.A. (2003). Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus. Plant Physiol. Biochem., 41: 1011-1017.
  • Kopyra, M., Gwozdz, E.A. (2004). The role of nitric oxide in plant growth regulation and responses to abiotic stresses. Acta Physiol. Plant, 26: 459-472.
  • Kovtun, Y., Chiu, W.L., Tena, G., Sheen, J. (2000). Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc. Natl. Acad. Sci. USA., 97: 2940-2945.
  • Krizek, D.T., Britz, S.J., Mirecki, R.M. (1998). Inhibitory effects of ambient levels of solar UV-A and UV-B radiation on growth of cv. New Red Fire lettuce. Physiol. Plant, 103: 1-7.
  • Krupa, Z., Siedlecka, A., Maksymiec, W., Baszynski, T. (1993). In vivo response of photosynthetic apparatus of Phaseolus vulgaris L. to nickel toxicity. J. Plant Physiol., 142: 664-668.
  • Kuzniak, E., Sklodowska, M. (1999). The effect of Botrytis cinerea infection on ascorbate glutathione cycle in tomato leaves. Plant Sci., 148: 69-76.
  • Kwak, J.M., Mori, I.C., Pei, Z.M., Leonhardt, N., Torres, M.A., Dangl, J.L., Bloom, R.E., Bodde, S., Jones, J.D., Schroeder, J.I. (2003). NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signalling in Arabidopsis. EMBO J., 22: 2623-2633.
  • Lamattina, L., Garcia-Mata, C., Graziano, M., Pagnussat, G. (2003). Nitric oxide: the versatility of an extensive signal molecule. Annu. Rev. Plant Biol., 54: 109-136.
  • Lamb, C., Dixon, R.A. (1997). The oxidative burst in plant disease resistance. Annu. Rev. Plant Physiol. Plant Mol. Biol., 48: 251-275.
  • Leshem, Y. (2000). Nitric oxide in plants. Occurence, function and use. Kluwer Academic Publishers, Boston.
  • Leshem, Y., Wills, R.B.H., Ku, V. (1998). Evidence for the function of the free radical gas-nitric oxide (NO) as an endogenous maturation and senescence regulating factor in higher plants. Plant Physiol. Biochem., 36: 825-833.
  • Leshem, Y.Y., Haramaty, E. (1996). The characterization and contrasting effects of the nitric oxide free radical in vegetative stress and senescence of Pisum sativum Linn. foliage. J. Plant Physiol., 148: 258-263.
  • Levine, A., Tenhaken, R., Dixon, R., Lamb, C. (1994). H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell, 79: 583-593.
  • Li, F., Liu, P., Wang, T., Bian, P., Wu, Y., Wu, L., Yu, Z. (2010). The induction of bystander mutagenic effects in vivo by alpha-particle irradiation in whole Arabidopsis thaliana plants. Radiat. Res., 174(2): 228-237.
  • Libourel, I.G.L., van Bodegom, P.M., Fricker, M.D., Ratcliffe, R.G. (2006). Nitrite reduces cytoplasmic acidosis under anoxia. Plant Physiol., 142: 1710-1717.
  • Lin, C.H., Chen, L.M., Liu, Z.H. (2005). Rapid effect of copper on lignin biosynthesis in soybean roots. Plant Sci., 168: 855-861.
  • Liszkay, A., Kenk, B., Schopfer, P. (2003). Evidence for the involvement of cell wall peroxidase in the generation of hydroxyl radicals mediating extension growth. Planta, 217: 658-667.
  • Liu, Y., Wu, R., Wan, Q., Xie, G., Bi, Y. (2007). Glucose-6-phosphate dehydrogenase plays a pivotal role in nitric oxide-involved defense against oxidative stress under salt stress in red kidney bean roots. Plant Cell Physiol., 48: 511-522.
  • Lloyd-Jones, D.M., Bloch, K.D. (1996). The vascular biology of nitric oxide and its role in atherogenesis. Annu. Rev. Med., 47: 365-375
  • Lopez-Carrion, A.I., Castellano, R., Rosales, M.A., Ruiz, J.M., Romero, L. (2008). Role of nitric oxide under saline stress: implications on proline metabolism. Biol. Plant, 52: 587-591.
  • Lopez-delgado, H., Dat, J.F., Foyer, C.H., Scott, I.M. (1998). Induction of thermo tolerance in potato micro plants by acetylsalicylic acid and H2O2. J. Exp. Bot., 49: 713-720.
  • Lopez-Huertas, E., Charlton, W.L., Johnson, B., Graham, I.A., Baker, A. (2000). Stress induces peroxisome biogenesis genes. EMBO Journal, 19: 6770-6777.
  • Lum, H.K., Butt, Y.K.C., Lo, S.C.L. (2002). Hydrogen peroxide induces a rapid production of nitric oxide in mung bean (Phaseolus aureus). Nitric Oxide:Biology and Chemistry, 6: 205-213.
  • Lumbreras, V., Vilela, B., Irar, S., Sole, M., Capellades, M., Valls, M., Coca, M., Pages, M. (2010). MAPK phosphatase MKP2 mediates disease responses in Arabidopsis and functionally interacts with MPK3 and MPK6. Plant J., DOI: 10.1111/j.1365-313X.2010.04297
  • Mackerness, S., Butt, P.J., Jordan, B.R., Thomas, B.J. (1996). Amelioration of ultraviolet-Binduced down-regulation of mRNA levels for chloroplast proteins, by high irradiance, is mediated by photosynthesis. J. Plant Physiol., 148: 100-106.
  • Mackerness, S.A.H., John, C.F., Jordan, B., Thomas, B. (2001). Early signalling components in ultraviolet-B responses: distinct roles for different reactive oxygen species and nitric oxide. FEBS Lett., 489: 237-242.
  • Macnair, M.R., Tilstone, G.H., Smith, S.E. (2000). The genetics of metal tolerance and accumulation in higher plants In Terry, N., Banuelos, G. (ed.), Phytoremediation of contaminated soil and water. CRC Press LLC, pp. 235-250.
  • Maksymiec, W., Baszynski, T. (1996). Chlorophyll fluorescence in primary leaves of excess Cutreated runner bean plants depends on their growth stages and the duration of Cuaction. J. Plant Physiol., 149: 196-200.
  • Maksymiec, W. (2007). signalling responses in plants to heavy metal stress. Acta Physiol. Plant., 29: 177-187.
  • Maksymiec, W., Krupa, Z. (2006b). The effects of short-term exposition to Cd, excess Cu ions and jasmonate on oxidative stress appearing in Arabidopsis thaliana. Environ. Exp. Bot., 57: 187-194.
  • Maksymiec, W., Russa, R., Urbanik-Sypniewska, T., Baszynski, T. (1994). Effect of excess Cu on the photosynthetic apparatus of runner bean leaves treated at two different growth stages. Physiol. Plant., 91: 715-721.
  • Mano, J. (2002). Early events in environmental stresses in plants. Induction mechanisms of oxidative stress (ed.), Oxidative stress in plants. London, Taylor and Francis, pp. 217-246.
  • Marschner, H. (2002). Mineral nutrition of higher plants, 2nd edn. Academic, London.
  • Mazza, C.A., Battista, D., Zima, A.M., Szwarcberg-Bracchitta, M., Giordano, C.V., Acevedo, A., Scopel, A.L., Ballare, C.L. (1999a). The effects of solar UV-B radiation on the growth and yield of barley are accompanied by increased DNA damage and antioxidant responses. Plant Cell Environ., 22: 61-70.
  • Mazza, C.A., Zavala, J., Scopel, A.L., Ballare, C.L. (1999b). Perception of solar UVB radiation by phytophagous insects: behavioral responses and ecosystem implications. Proc. Natl. Acad. Sci. USA., 96: 980-985.
  • Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci., 7: 405-410.
  • Mittler, R., Herr, E.H., Orvar, B.L., Van Camp, W., Willekens, H., et al. (1999). Transgenic tobacco plants with reduced capability to detoxify reactive oxygen intermediates are hyperresponsive to pathogen infection. Proc. Natl. Acad. Sci. USA., 96: 14165-14170.
  • Mittler, R., Vanderauwera, S., Gollery, M., Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends Plant Sci., 9: 490-498.
  • Molas, J. (2002). Changes of chloroplast ultrastructure and total chlorophyll concentration in cabbage leaves caused by excess of organic Ni (II) complexes. Environ. Exp. Bot., 47: 115-126.
  • Moller, I.M. (2001). Plant mitochondria and oxidative stress: Electron transport, NADPH turnover and metabolism of reactive oxygen species. Annual Review of Plant Physiology and Plant Molecular Biology 52: 561-591.
  • Moller, I.M., Sweetlove, L.J. (2010). ROS signalling-specificity is required. Trends Plant Sci., 7: 370-374.
  • Moon, H., Lee, B., Choi, G., Shin, D., Prasad, T., et al. (2003). NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc. Natl. Acad. Sci. USA., 100: 358-363.
  • Morita, S., Kaminaka, H., Masumura, T., Tanaka, K. (1999). Induction of rice cytosolic ascorbate peroxidase mRNA by oxidative stress; the involvement of hydrogen peroxide in oxidative stress signalling. Plant Cell Physiol., 40: 417-422.
  • Mullineaux, P., Ball, L., Escobar, C., Karpinska, B., Creissen, G., Karpinski, S. (2000). Are diverse signalling pathways integrated in the regulation of aradopsis anti oxidant defence gene expression in response to excess excitation energy ? Philosophical Transation of Royal Society London 355: 1531-1540.
  • Munne, B.S., Jubany, M., Alegre, L. (2001). Drought-induced senescence is characterized by a loss of antioxidant defences in chloroplasts. Plant Cell Environ., 24: 1319-1327.
  • Nagalakshmi, N., Prasad, M.N.V. (2001). Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus. Plant Sci., 160: 291-299.
  • Neale, A.D., Blomstedt, C.K., Bronson, P., Le, T., Guthridge, K., Evans, J., Gaff, D.F., Hamill, J.D. (2000). The isolation of genes from the resurrection grass Sporolobus stapfianus which are induced during severe drought stress. Plant Cell Environ., 23: 265-277.
  • Neill, S., Bright, J., Desikan, R., Hanckock, J., Harrison, J., Wilson, I. (2008). Nitric oxide evolution and perception. J. Exp. Bot., 59: 25-35.
  • Neill, S., Desikan, R., Claarke, A., Hancock, J. (1999). H2O2 signalling in plant cells. In: Plant Responses to Environmental Stress (ed.) Bios Scientific Publishers, Oxford, pp. 59-64.
  • Neill, S., Desikan, R., Hancock, J. (2002). Hydrogen peroxide signalling. Curr. Opin. Plant Biol., 5: 388-395.
  • Neill, S., Desikan, R., Hancock, J.T. (2003). Nitric oxide signalling in plants. New Phytol., 159: 11-35.
  • Neill, S.J., Desikan, D., Clarke, A., Hancock, J.T. (2002). Nitric oxide is a novel component of abscisic acid signalling in stomatal guard cells. Plant Physiology, 128: 13-16.
  • Neill, S.J., Desikan, R., Clarke, A., Hurst, R.D., Hancock, J.T. (2002). Hydrogen peroxide and nitric oxide as signalling molecules in plants. J. Exp. Bot., 53: 1237-1247.
  • Neto, A.D.A., Prisco, J.T., Eneas-Filho, J., Jand-Venes, R., Gomes-Filho, E. (2005). Hydrogen peroxide pre-treatment induces saltstress acclimation in maize plants. J. Plant Physiol., 162: 1114-1122.
  • Nunoshiba, T., De Rojas-Walker, T., Wishnok, J.S., Tannenbaum, S.R., Demple, B. (1993). Activation by nitric oxide of an oxidativestress response that defends Escherichia coli against activated macrophages. Proc. Natl. Acad. Sci. USA., 90: 9993-9997.
  • Orozco-Cardenas, M., McGurl, B., Ryan, C.A. (1993). Expression of an antisense prosystemin gene in tomato plants reduce the resistance towards Manduca sexta Larvae. Proc. NatI. Acad. Sci. USA., 90: 8273-8276.
  • Orozco-Cardenas, M.L., Narvaez-Vasquez, J., Ryan, C.A. (2001). Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell, 13: 179-191.
  • Ouzounidou, G., Giamparova, M., Moustakas, M., Karataglis, S. (1995). Responses of maize (Zea mays L.) plants to copper stress. I. Growth Environ Exp. Bot., 35: 167-176.
  • Overmyer, K., Brosche, M., Kangasjarvi, J. (2003). Reactive oxygen species and hormonal control of cell death. Trends Plant Sci., 8: 335-342.
  • Palmieri, M.C., Sell, S., Huang, X., Scherf, M., Werner, T., Durner, J., Lindermayr, C. (2008). Nitric oxide-responsive genes and promoters in Arabidopsis thaliana: a bioinformatics approach. J. Exp. Bot., 59: 177-186.
  • Panda, S.K. (2003). Heavy metal phytotoxicity induces oxidative stress moss Taxithelium sp. Curr. Sci., 84: 631-633.
  • Panda, S.K., Chaudhury, I., khan, M.H. (2003a). Heavy metal induced lipid peroxidation and affects antioxidant in wheat leaves. Biol. Plant., 46: 289-294.
  • Panda, S.K., Singa, L.B., Khan, M.H. (2003b). Does aluminium phytotoxicity induce oxidative stress in green gram (Vigna radiate)? Bulg. J. Plant Physiol., 29: 77-86.
  • Papadakis, A.K., Roubelakis-Angelakis, K.A. (1999). The generation of active oxygen species differs in tobacco and grapevine mesophyll protoplasts. Plant Physiol., 121: 197-205.
  • Paul, N.D., Gwynn-Jones, D. (2003). Ecological roles of solar UV radiation: towards an integrated approach. Trends Ecol. Evol., 18: 48-55.
  • Pedroso, M.C., Durzan, D.J. (2000). Effect of different gravity environments on DNA fragmentation and cell death in Kalanchoe leaves. Annals Bot., 86: 983-994.
  • Pedroso, M.C., Magalhaes, J.R., Durzan, D. (2000). Nitric oxide induces cell death in Taxus cells. Plant Sci., 157: 173-180.
  • Perry, S.F., Spinelli O.E. (2010). Respiration in a changing environment. Respir. Physiol. Neurobiol., 173: 20-25.
  • Piqueras, A., Olmos, E., Martinez-Soalano, J.R., Hellin, E. (1999). Cd induced oxidative burst in tobacco BY2 cells: time-course subcellular location and antioxidant response. Free Radical Research, 31: 33-38.
  • Polverari, A., Molesini, B., Pezzotti, M., Buonaurio, R., Marte, M., Delledonne, M. (2003). Nitric oxide-mediated transcriptional changes in Arabidopsis thaliana. Mol. Plant Microbe Interact., 16: 1094-1105.
  • Potikha, T.S., Collins, C.C., Johnson, D.I., Delmer, D.P., Levine, A. (1999). The involvement of hydrogen peroxide in the differentiation of secondary walls in cotton fibers. Plant Physiol., 119: 849-858.
  • Prasad, K.V.S.K., Pardha Saradhi, P., Sharmila, P. (1999). Concerted action antioxidant enzyme and curtailed growth under Zinc toxicity in Brassica napus. Environ Exp. Bot., 42: 1-10.
  • Prasad, T.K., Anderson, M.D., Martin, B.A., Stewart, C.R. (1994). Evidence for chilling induced oxidative stress in maize seedlings and a regulatory role of H2O2. Plant Cell, 6: 65-74.
  • Przymusinski, R., Gwozdz, E.A. (1999). Heavy metal-induced polypeptides in lupin roots are similar to pathogenesisrelated proteins. J. Plant Physiol., 154: 703-708.
  • Quartacci, M.F., Cosi, E., Navari-Izzo, F. (2001). Lipids and NADPH-dependent superoxide production in plasma membrane vesicles from roots of wheat grown under copper deficiency or excess. J. Exp. Bot., 52: 77-84.
  • Ramamurthi, A., Lewis, R.S. (1997). Measurement and modeling of nitric oxide release rates for nitric oxide donors. Chem. Res. Toxicol., 10: 408-413.
  • Rao, M.V., Paliyath, G., Ormrod, D.P. (1996). Ultraviolet-B-and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol., 110: 125-136.
  • Rausch, T., Kirsch, M., Low, R., Lehr, A., Vierck, R., Zhigang, A. (1996). Salt stress response of higher plants: the role of proton pumps and Na+/H+antiporters. J. Plant Physiol., 148: 425-433.
  • Ren, J., Dai, W., Xuan, Z., Yao, Y., Korpelainen, H., Li, C. (2007). The effect of drought and enhanced UV-B radiation on the growth and physiological traits of two contrasting poplar species. Forest Ecol. Manage., 239: 112-119.
  • Rentel, M., Knight, M.R. (2004). Oxidative stressinduced calcium signalling in Arabidopsis. Plant Physiol., 135: 1471-1479.
  • Rockel, P., Strube, F., Rockel, A., Wildt, J., Kaiser, W.M. (2002). Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J. Exp. Bot., 53: 103-110.
  • Romero-Puertas, M.C., McCarthy, I., sandalio, L.M., Palma, J.M., Corpas, F.J., Gomez, M., Del Rio, L.A. (1999). Cadmium toxicity and oxidative metabolism of pea leaves peroxisomes. Free Radical Research, 31: 25-31.
  • Romero-Puertas, M.C., Perazzolli, M., Zago, E.D., Delledonne, M. (2004). Nitric oxide signalling functions in plant-pathogen interactions. Cellu. Microbiol., 6: 795-803.
  • Rousseaux, M.C., Ballare, C.L., Scopel, A.L., Searles, P.S., Caldwell, M.M. (1998). Responses to solar ultraviolet-B radiation in a shrub-dominated natural ecosystem of Tierra del Fuego (southern Argentina). Oecologia, 116: 528-535.
  • Ruan, H., Shen, W., Ye, M., Xu, L. (2002). Protective effects of nitric oxide on salt stressinduced oxidative damage to wheat (Triticum aestivum L.) leaves. Chin. Sci. Bull., 47: 677-681.
  • Sakihama, Y., Murakami, S., Yamasaki, H. (2003). Involvement of nitric oxide in the mechanism for stomatal opening in Vicia faba leaves. Biol. Plant, 46: 117-119.
  • Sandalio, L.M., Dalurzo, H.C., Gomez, M., Romero-Puertas, M.C., Del Rio, L.A. (2001). Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J. Exp. Bot., 52: 2115-2126.
  • Sang, J., Jiang, M., Lin, F., Xu, S., Zhang, A., Tan, M. (2008). Nitric oxide reduces hydrogen peroxide accumulation involved in water stressinduced subcellular anti-oxidant defense in maize plants. J. Integr. Plant Biol., 50: 231-243.
  • Santa-Cruz, D.M., Pacienza, N.A., Polizio, A.H., Balestrasse, K.B., Tomaro, M.L., Yannarelli, G.G. (2010). Nitric oxide synthase-like dependent NO production enhances heme oxygenase up-regulation in ultraviolet-B-irradiated soybean plants. Phytochemistry, 71: 1700-1707.
  • Scandalios, J.G., Guan, L., Polidoros, A.N. (1997). Catalases in plants: gene structure, properties, regulation, and expression. In: Scandalios, J.G. (ed.) Oxidative Stress and the Molecular Biology of Antioxidant Defenses, Cold Spring Harbor Laboratory Press, New York, pp. 343-398.
  • Schmidt, H.W., Walter, U. (1994). NO at work. Cell, 78: 919-925.
  • Schutzendubel, A., Schwanz, P., Teichmann, T., Gross, K., Langenfeld-Heyser, R., Goldbold, D.L., Polle, A. (2001). Cadmium induced changes in antioxidant systems, hydrogen peroxide content and differentiation in Scot pine roots. Plant Physiol., 127: 887-898.
  • Sergi, M.B., Tana, J.M., Leonor, A. (2003). Enhanced photo and antioxidative protection and hydrogen peroxide accumulation in drought stresses cistus clusii and cistus albidus plants. Tree Physiology, 23: 1-12.
  • Svo. FEBS Lett., 515: 75-78.
Еще
Статья обзорная