Rooting technique of double haploids obtained in culture of microspore in vitro for European radish

Автор: Kozar Elena V., Kozar Elena G., Soldatenko Alexey V., Domblides Elena A.

Журнал: Овощи России @vegetables

Рубрика: Селекция и семеноводство сельскохозяйственных растений

Статья в выпуске: 5 (55), 2020 года.

Бесплатный доступ

Relevance. Doubled haploids (DH-plants) are excellent material for genetic research and breeding due to their complete homozygosity. The genus Raphanus from the Brassicaceae family is the toughest to produce doubled haploid plants through isolated microspore culture in vitro (IMC). The study of the causes of disturbed root formation and the development of elements of this stage of technology will significantly increase the effectiveness of the IMC technology for European radish. Methods. The study included three varieties from the collection of the Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center (FSBSI FSVC): Teplichny Gribovsky, Rozovo-krasniy s belim konchikom and Rhodes. The experiments used a standard protocol for obtaining DH plants using IMC technology in a standard form and with a modification of the rooting stage. The solid MS medium (with agar 7g/L): MS without hormones, MS medium supplemented with IAA at concentrations of 0.5; 1 and 2 mg / L and liquid MSm medium supplemented with 0.1 mg / L kinetin were used for rooting of regenerated plants. All media were supplemented with 20 g/L sucrose. We used three types of techniques for transplanting plant explants onto a solid hormone-free MS medium: planting micro-shoots with their basal part immersed by 2-3 mm into the medium; planting in a well made in a nutrient medium using tweezers under sterile conditions; and landing on the surface of the medium without embedment. Results. In this work, we studied the features of the stage of rooting of regenerated European radish plants in vitro conditions. The transplant technique has been proven to be important for the successful establishment of radish micro-shoots. Plant explants must be planted strictly on the surface of a solid hormone-free nutrient medium MS, without embedment. The use of tubes with bridges made of filter paper and MSm liquid medium with the addition of 0.1 mg/L kinetin for the induction of root formation also showed high efficiency. For plants prone to the formation of root-like structures (RLS) with secondary tumors (ST), multiple dissection of abnormal formations with successive transplants s necessary. Modification at the rooting stage of micro-shoots growing has increased the percentage of successfully adapted DH plants in vivo conditions from 0-14% to 95-98%.


Dh-растения, raphanus satvus, культура изолированных микроспор in vitro, регенерация в культуре in vitro, укоренение in vitro, dh plants, raphanus sativus, culture of isolated microspores in vitro, regeneration in culture in vitro, rooting in vitro conditions, phytohormones, root-like structures (rls) with secondary tumors (st)


Короткий адрес:

IDR: 140250322   |   DOI: 10.18619/2072-9146-2020-5-3-15

Список литературы Rooting technique of double haploids obtained in culture of microspore in vitro for European radish

  • Asif M. Progress and Opportunities of Doubled Haploid Production. Springer. 2013. DOI: 10.1007/978-3-319-00732-8_1
  • Buzovkina I.S., Lutova L.A. Genetic collection of inbred lines of radish: history and prospects. Russian Journal of Genetics. 2007;(4):1411-1423.
  • Buzovkina, I. S., Kneshke, I., and Lutova, L.A. In vitro modeling of tumor formation in radish lines and hybrids. Genetika. 1993;29(6):1002-1008.
  • Chun C., Park H., Na H. Microspore-derived embryo formation in radish (Raphanus sativus L.) according to nutritional and environmental conditions. Hort. Environ. Biotechnol. 2011;52(5):530-535. DOI: 10.1007/s13580-011-0080-1
  • Custers J.B.M. Microspore culture in rapeseed (Brassica napus L.). In: Maluszynski M., Kasha K.J., Forster B.P., Szarejko I. (eds). Doubled Haploid Production in Crop Plants. 2003:185-186. DOI: 10.1007/978-94-017-1293-4_29
  • da Silva Dias J.C. Protocol for broccoli microspore culture. In: Maluszynski M., Kasha K.J., Forster B.P., Szarejko I. (eds). Doubled Haploid Production in Crop Plants. 2003:195-204.
  • DOI: 10.1007/978-94-017-1293-4_30
  • Dodueva, I.E., Lebedeva, M.A., Kuznetsova, K.A., Gancheva, M.S., Paponova, S.S., Lutova, L.L. Plant tumors: a hundred years of study. Planta. 2020;251(4):82.
  • DOI: 10.1007/s00425-020-03375-5
  • Domblides E.A., Shmykova N.A., Shumilina N.A., Zayachkovskaya T.V., Mineykina A.I., Kozar E.V., Ahramenko V.A., Shevchenko L.L., Kan L.Ju., Bondareva L.L., Domblides A.S. A technology for obtaining doubled hap-loids in microspore cultures of the Brassicaceae family (guidelines). Moscow: VNIISSOK Publ., 2016. (In Russ)
  • Dunwell J.M. Haploids in flowering plants: origins and exploitation. Plant Biotechnol. J. 2010;(8):377-424. 10.1111/j.1467-7652. 2009.00498.x.
  • DOI: 10.1111/j.1467-7652.2009.00498.x
  • Efroni I., Mello A., Nawy T., Ip P.L., Rahni R., Delrose N., Powers A., Satija R., Birnbaum K.D. Root regeneration triggers an embryo-like sequence guided by hormonal interactions. Cell. 2016;(165):1721-1733. [CrossRef]
  • DOI: 10.1016/j.cell.2016.04.046
  • Ferrie A. Microspore culture of Brassica species. In: Maluszynski M., Kasha K.J., Forster B.P., Szarejko I. (eds). Doubled Haploid Production in Crop Plants. 2003:205-215.
  • DOI: 10.1007/978-94-017-1293-4_31
  • Forster B.P., Thomas W.T.B. Doubled haploids in genetics and plant breeding. In: Janick J. (Ed.). Plant Breeding Reviews. 2005;(25):57-88.
  • DOI: 10.1002/9780470650301
  • Gibbs D.J., Conde J.V., Berckhan S., Prasad G., Mendiondo G.M., Holdsworth M.J. Group VII ethylene response factors coordinate oxygen and nitric oxide signal transduction and stress responses in plants. Plant Physiology. 2015;(169):23-31.
  • DOI: 10.1104/pp.15.00338
  • Han N., Kim S.U., Park H.Y., Na H. Microspore-derived embryo formation and morphological changes during the isolated microspore culture of radish (Raphanus sativus L.). Kor. J. Hort. Sci. Technol. 2014;32(3):382-389.
  • DOI: 10.7235/hort.2014.13170
  • Han N., Na H., Kim J. Identification and variation of major aliphatic glu-cosinolates in doubled haploid lines of radish (Raphanus sativus L.). Kor. J. Hort. Sci. Technol. 2018;36(2):302-311.
  • DOI: 10.12972/kjhst.20180030
  • Il'ina, E.L., Dodueva, I.E., Ivanova, N.M. et al. The effect of cytokinins on in vitro cultured inbred lines of Raphanus sativus var. radicula Pers. with genetically determined tumorigenesis. Russian Journal of Plant Physiology. 2006;(53):514-522.
  • DOI: 10.1134/S1021443706040133
  • Kozar E.V., Domblides E.A., Soldatenko A.V. Factors affecting DH plants in vitro production from microspores of European radish. Vavilov Journal of Genetics and Breeding. 2020;24(1):31-39.
  • DOI: 10.18699/VJ20.592
  • Lebedeva M.A, Tvorogova V.E., Vinogradova A.P., Gancheva M.A., Azarakhsh M., Ilina E.L., Demchenko K.N., Dodueva I.E., Lutova L.A. Initiation of spontaneous tumors in radish (Raphanus sativus): cellular, molecular and physiological events. Journal of Plant Physiology. 2015;(173):97-104.
  • DOI: 10.1016/jJplph.2014.07.030
  • Licausi F., Kosmacz M., Weits D.A., Giuntoli B., Giorgi F.M., Voesenek L. ACJ, Perata P., van Dongen J.T. Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. Nature. 2011;479(7373):419-422.
  • DOI: 10.1038/nature10536
  • Liu J., Sheng L., Xu Y., Li J., Yang Z., Huang H., Xu L. WOX11 and 12 are involved in the first-step cell fate transition during de novo root organogenesis in Arabidopsis. Plant Cell. 2014;(26):1081-1093. [CrossRef] [PubMed]
  • DOI: 10.1105/tpc.114.122887
  • Lutova L., Dodueva I. Genetic control of regeneration processes of radish plants in vitro: from phenotype to genotype. Bio. Comm. 2019;64(2):124-132.
  • DOI: 10.21638/spbu03.2019.204
  • Maluszynski M., Kasha K.J., Forster B.P., Szarejko I. Doubled Haploid Production in Crop Plants: A Manual. Springer Science Business Media. 2003:141-150.
  • DOI: 10.1007/978-94-017-1293-4
  • Masuda K., Kikuta Y., Okazava Y. A Revision of the Medium for Somatic Embryogenesis in Carrot Suspension Culture. J. Fac. Agr. Hokkaido Univ. 1981;(60):183-193.
  • Matveeva T.V., Frolova N.V., Smets R., Dodueva I.E., Buzovkina I.S., Van Onckelen H., Lutova L.A. Hormonal control of tumor formation in radish. Journal of Plant Growth Regulation. 2004;(23):37-43.
  • DOI: 10.1007/s00344-004-0004-8
  • Murashige T., Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia plantarum. 1962;15(3):473-497.
  • Narbut S.I. Genetic tumor generated during inbreeding in radish. Vestn. Leningr. Univ. 1967;(15):144-149. (In Russ)
  • Shukla V., Lombardi L., Iacopino S., Pencik A., Novak O., Perata P., Giuntoli B., Licausi F. Endogenous Hypoxia in Lateral Root Primordia Controls Root Architecture by Antagonizing Auxin Signaling in Arabidopsis. Molecular Plant. 2019;(12):538-551.
  • Shumilina D., Kornyukhin D., Domblides E., Soldatenko A., Artemyeva A. Effects of Genotype and Culture Conditions on Microspore Embryogenesis and Plant Regeneration in Brassica rapa ssp. rapa L. Plants. 2020;9(2):278.
  • DOI: 10.3390/plants9020278
  • Takahata Y., Komatsu H., Kaizuma N. Microspore culture of radish (Raphanus sativus L.): influence of genotype and culture conditions on embryogenesis. Plant Cell Rep. 1996;16(3-4):163-166.
  • DOI: 10.1007/BF01890859
  • Tuncer B. Callus formation from isolated microspore culture in radish (Raphanus sativus L.). J. Anim. Plant Sci. 2017;27(1):277-282.
  • Tyukavin, G.B., Shmykova, N.A., Mankhova, M.A. Cytological study of embryogenesis in cultured carrot anthers. Russian Journal of Plant Physiology. 1999;46(6):876-884. (In Russ)
  • Vjurtts T.S., Domblides E.A., Shmykova N.A., Fedorova M.I., Kan L.Ju., Domblides A.S. Production of DH-plants in culture of isolated microspore in carrot. Vegetable crops of Russia. 2017;(5):25-30. (In Russ.)
  • DOI: 10.18619/2072-9146-2017-5-25-30
  • Zhang G., Zhao F., Chen L., Pan Y., Sun L., Bao N., Zhang T., Cui C.X., Qiu Z., Zhang Y. Jasmonate-mediated wound signalling promotes plant regeneration. Nat. Plants. 2019;(5):491-497. [CrossRef] [PubMed]
  • DOI: 10.1038/s41477-019-0408-x
  • Zhou W., Lozano-Torres J.L., Blilou I., Zhang X., Zhai Q., Smant G., Li C., Scheres B. A jasmonate signaling network activates root stem Cells and promotes regeneration. Cell. 2019;(177):942-956.e14. [CrossRef] [PubMed]
  • DOI: 10.1016/j.cell.2019.03.006
Статья научная