Сахарный диабет 2 типа: роль эпигенетических модификаций в патофизиологии и перспективы использования эпигенетической терапии

Автор: Айтбаев Кубаныч Авенович, Мамутова Светлана Калиевна, Муркамилов Илхом Торобекович, Фомин Виктор Викторович, Кудайбергенова Индира Орозобаевна, Муркамилова Жамила Абдилалимовна, Юсупов Фуркат Абдулахатович

Журнал: Бюллетень науки и практики @bulletennauki

Рубрика: Медицинские науки

Статья в выпуске: 5 т.7, 2021 года.

Бесплатный доступ

Рост заболеваемости сахарным диабетом 2 типа (СД2) в мире с каждым годом приобретает все более угрожающий характер. Чтобы остановить эпидемию СД2 необходимы новые знания о причинах развития данного заболевания и подходах к его профилактике и лечению. В последние десятилетия, с развитием высокопроизводительных технологий, получены доказательства, свидетельствующие об эпигенетических механизмах регуляции экспрессии генов, включая метилирование ДНК, гистоновые модификации и некодирующие микроРНК, изменения которых играют ключевую роль в патофизиологии некоторых болезней, включая СД2. Триггерами модификаций этих эпигенетических механизмов могут служить определенные факторы окружающей среды, такие как диета, низкая физическая активность, воздействие микробов и загрязнителей, а также образ жизни. В свою очередь, эпигенетические модификации могут изменять экспрессию и функции некоторых генов, участвующих в биосинтезе инсулина и метаболизме глюкозы, что приводит к гипергликемии и инсулинорезистентности. К счастью, эпигенетические изменения можно устранить путем блокировки или активации модулирующих ферментов. Таким образом, эпигенетическое репрограммирование может явиться новым подходом в профилактике и терапии СД2.

Еще

Метилирование днк, микрорнк, гистоновые модификации, эпигеном, метаболизм глюкозы, гипергликемия, инсулинорезистентность

Короткий адрес: https://sciup.org/14120965

IDR: 14120965   |   DOI: 10.33619/2414-2948/66/17

Список литературы Сахарный диабет 2 типа: роль эпигенетических модификаций в патофизиологии и перспективы использования эпигенетической терапии

  • Dayeh T., Volkov P., Salö S., Hall E., Nilsson E., Olsson A. H., Ling C. Genome-wide DNA methylation analysis of human pancreatic islets from type 2 diabetic and non-diabetic donors identifies candidate genes that influence insulin secretion // PLoS Genet. 2014. V. 10. №3. P. e1004160. https://doi.org/10.1371/journal.pgen.1004160
  • D'alessio D. The role of dysregulated glucagon secretion in type 2 diabetes // Diabetes, Obesity and Metabolism. 2011. V. 13. P. 126-132. https://doi.org/10.1111/j.1463-1326.2011.01449.x
  • Lebovitz H. E. Type 2 diabetes: an overview // Clinical chemistry. 1999. V. 45. №8. P. 1339-1345. https://doi.org/10.1093/clinchem/45.8.1339
  • Ramachandran A. Know the signs and symptoms of diabetes // The Indian journal of medical research. 2014. V. 140. №5. P. 579. https://www.ncbi.nlm.nih.gov/pubmed/25579136
  • Papatheodorou K. et al. Complications of diabetes 2016. 2016. https://doi.org/10.1155/2016/6989453
  • Pinney S. E., Simmons R. A. Epigenetic mechanisms in the development of type 2 diabetes // Trends in Endocrinology & Metabolism. 2010. V. 21. №4. P. 223-229. https://doi .org/10.1016/j.tem.2009.10.002
  • Atlas D. International diabetes federation //IDF Diabetes Atlas, 7th edn. Brussels, Belgium: International Diabetes Federation. - 2015.
  • Atlas D. International Diabetes Federation. IDF Diabetes Atlas, 8th edn. Brussels, Belgium: International Diabetes Federation, 2017.
  • Дедов И.И., Шестакова М.В., Майоров А.Ю. и др. Алгоритмы специализированной медицинской помощи больным сахарным диабетом // Сахарный диабет. 2019. Т. 22. №1S1. С. 1-144.
  • Wu Z., McGoogan J. M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention // Jama. 2020. V. 323. №13. P. 1239-1242. https://doi.org/10.1001/jama.2020.2648
  • Исмаилов У. Ш., Зурдинов А. С. Эпидемиологическая ситуация по заболеваемости сахарным диабетом в Кыргызстане // Международный журнал прикладных и фундаментальных исследований. 2020. №3. С. 45-49.
  • Chen L., Magliano D. J., Zimmet P. Z. The worldwide epidemiology of type 2 diabetes mellitus—present and future perspectives // Nature reviews endocrinology. 2012. V. 8. №4. P. 228. https://doi .org/10.1038/nrendo.2011.183
  • Yahaya T., Obaroh I. O., Oldele E. O. The roles of microorganisms in the pathogenesis and prevalence of diabetes: a review // Diabetes. 2017. V. 1. P. 3. https://ir.unilag.edu.ng/handle/123456789/4830
  • Yahaya T. Role of epigenetics in the pathogenesis and management of type 2 diabetes mellitus // Translation: The University of Toledo Journal of Medical Sciences. 2019. V. 6. P. 20-28. https://doi.org/10.46570/utjms.vol6-2019-319
  • McCarthy M. I. Genomics, type 2 diabetes, and obesity // New England Journal of Medicine. 2010. V. 363. №24. P. 2339-2350. https://doi.org/10.1056/NEJMra0906948
  • Slomko H., Heo H. J., Einstein F. H. Minireview: Epigenetics of obesity and diabetes in humans // Endocrinology. 2012. V. 153. №3. P. 1025-1030. https://doi.org/10.1210/en.2011-1759
  • Ling C., Groop L. Epigenetics: a molecular link between environmental factors and type 2 diabetes // Diabetes. 2009. V. 58. №12. P. 2718-2725. https://doi.org/10.2337/db09-1003
  • Handy D. E., Castro R., Loscalzo J. Epigenetic modifications: basic mechanisms and role in cardiovascular disease // Circulation. 2011. V. 123. №19. P. 2145-2156. https://doi.org/10.1161/CIRCULATIONAHA.110.956839
  • Bird A. Perceptions of epigenetics // Nature. 2007. V. 447. №7143. P. 396. https://doi.org/10.1038/nature05913
  • Kanherkar R. R., Bhatia-Dey N., Csoka A. B. Epigenetics across the human lifespan // Frontiers in cell and developmental biology. 2014. V. 2. P. 49. https://doi.org/10.3389/fcell.2014.00049
  • Caputo J. B., Vagula M. C. Cognitive impairment and dementia in Type 2 diabetes mellitus // US Pharm. 2014. V. 39. №10. P. 33-37.
  • Nilsson E., Ling C. DNA methylation links genetics, fetal environment, and an unhealthy lifestyle to the development of type 2 diabetes // Clinical epigenetics. 2017. V. 9. №1. P. 1-8. https://doi.org/10.1186/s13148-017-0399-2
  • Пендина А. А., Гришкевич В. В., Кузнецова Т. В., Баранов В. С. Метилирование ДНК-универсальный механизм регуляции активности генов // Экологическая генетика. 2004. Т. 2. №1. С. 27-37.
  • Lister R., Pelizzola M., Dowen R. H., Hawkins R. D., Hon G., Tonti-Filippini J., Ecker J. R. Human DNA methylomes at base resolution show widespread epigenomic differences // Nature. 2009. Т. 462. №7271. С. 315-322. https://doi.org/10.1038/nature08514
  • Singal R., Ginder G. D. DNA methylation // Blood, The Journal of the American Society of Hematology. 1999. V. 93. №12. P. 4059-4070. https://doi.org/10.1182/blood.V93.12.4059
  • Moore L. D., Le T., Fan G. DNA methylation and its basic function // Neuropsychopharmacology. 2013. V. 38. №1. P. 23-38. https://doi.org/10.1038/npp.2012.112
  • Chen Z., Riggs A. D. DNA methylation and demethylation in mammals // Journal of Biological Chemistry. 2011. V. 286. №21. P. 18347-18353. https://doi.org/10.1074/jbc.R110.205286
  • Toperoff G. et al. Genome-wide survey reveals predisposing diabetes type 2-related DNA methylation variations in human peripheral blood // Human molecular genetics. 2012. V. 21. №2. P. 371-383. https://doi.org/10.1093/hmg/ddr472
  • Ling C., Poulsen P., Carlsson E., Ridderstrale M., Almgren P., Wojtaszewski J., Vaag A. Multiple environmental and genetic factors influence skeletal muscle PGC-1a and PGC-1P gene expression in twins // The Journal of clinical investigation. 2004. V. 114. №10. P. 1518-1526. https://doi.org/10.1172/JCI21889
  • Ling C., Del Guerra S., Lupi R., Ronn T., Granhall C., Luthman H., Del Prato S. Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion // Diabetologia. 2008. V. 51. №4. P. 615-622. https://doi.org/10.1007/s00125-007-0916-5
  • Alibegovic A. C., Sonne M. P., H0jbjerre L., Bork-Jensen J., Jacobsen S., Nilsson E., Vaag A. Insulin resistance induced by physical inactivity is associated with multiple transcriptional changes in skeletal muscle in young men // American Journal of Physiology-Endocrinology and Metabolism. 2010. V. 299. №5. P. E752-E763. https://doi.org/10.1152/ajpendo.00590.2009
  • Wang J., Qiao J. D., Liu X. R., Liu D. T., Chen Y. H., Wu Y., Liao W. P. UNC13B variants associated with partial epilepsy with favourable outcome // Brain. 2021. https://doi.org/10.1093/brain/awab164
  • Ronti T., Lupattelli G., Mannarino E. The endocrine function of adipose tissue: an update // Clinical endocrinology. 2006. V. 64. №4. P. 355-365. https://doi.org/10.1111/j.1365-2265.2006.02474.x
  • Guay S. P., Brisson D., Lamarche B., Biron S., Lescelleur O., Biertho L., Bouchard L. ADRB3 gene promoter DNA methylation in blood and visceral adipose tissue is associated with metabolic disturbances in men // Epigenomics. 2014. V. 6. №1. P. 33-43. https://doi.org/10.2217/epi.13.82
  • Gillberg L., Jacobsen S. C., Ronn T., Br0ns C., Vaag A. PPARGC1A DNA methylation in subcutaneous adipose tissue in low birth weight subjects—impact of 5 days of high-fat overfeeding // Metabolism. 2014. V. 63. №2. P. 263-271. https://doi.org/10.1016/j.metabol.2013.10.003
  • Gillberg L., Jacobsen S., Ribel-Madsen R., Gjesing A. P., Boesgaard T. W., Ling C., Vaag A. Does DNA methylation of PPARGC1A influence insulin action in first degree relatives of patients with type 2 diabetes? // PloS one. 2013. V. 8. №3. P. e58384. https://doi.org/10.1371/annotation/5c3cf392-57b5-4e80-9a66-4997d10200ae
  • Guenard F., Tchernof A., Deshaies Y., Perusse L., Biron S., Lescelleur O., Vohl M. C. Differential methylation in visceral adipose tissue of obese men discordant for metabolic disturbances // Physiological genomics. 2014. V. 46. №6. P. 216-222. https://doi .org/10.1152/physiolgenomics.00160.2013
  • Grundberg E., Meduri E., Sandling J. K., Hedman A. K., Keildson S., Buil A., Spector T. D. Global analysis of DNA methylation variation in adipose tissue from twins reveals links to disease-associated variants in distal regulatory elements // The American Journal of Human Genetics. 2013. V. 93. №5. P. 876-890. https://doi.org/10.1016Zj.ajhg.2013.10.004
  • Gehrke S., Brueckner B., Schepky A., Klein J., Iwen A., Bosch T. C., Hagemann S. Epigenetic regulation of depot-specific gene expression in adipose tissue // PloS one. 2013. V. 8. №12. P. e82516. https://doi.org/10.1371/journal.pone.0082516
  • Egger G., Liang G., Aparicio A., Jones P. A. Epigenetics in human disease and prospects for epigenetic therapy // Nature. 2004. V. 429. №6990. P. 457-463. https://doi.org/10.1038/nature02625
  • Brown T. A. et al. Genetics: a molecular approach. Chapman & Hall Ltd, 1998. №Ed. 3.
  • Erkmann J. Histone modification research methods // Mater Methods. 2011. V. 1. P. 92.
  • Villeneuve L. M., Natarajan R. The role of epigenetics in the pathology of diabetic complications // American Journal of Physiology-Renal Physiology. 2010. V. 299. №1. P. F14-F25. https://doi .org/10.1152/aj prenal.00200.2010
  • Kupczyk M., Kuna P. MicroRNAs—new biomarkers of respiratory tract diseases // Advances in Respiratory Medicine. 2014. V. 82. №2. P. 183-190. https://doi.org/10.5603/PiAP.2014.0024
  • Kaspi H., Pasvolsky R., Hornstein E. Could microRNAs contribute to the maintenance of P cell identity? // Trends in Endocrinology & Metabolism. 2014. V. 25. №6. P. 285-292. https://doi.org/10.1016/j.tem.2014.01.003
  • Ruiz M. A., Chakrabarti S. MicroRNAs: the underlying mediators of pathogenetic processes in vascular complications of diabetes // Canadian journal of diabetes. 2013. V. 37. №5. P. 339-344. https://doi.org/10.1016/jjcjd.2013.07.003
  • Kameswaran V., Bramswig N. C., McKenna L. B., Penn M., Schug J., Hand N. J., Kaestner K. H. Epigenetic regulation of the DLK1-MEG3 microRNA cluster in human type 2 diabetic islets // Cell metabolism. 2014. V. 19. №1. P. 135-145. https://doi.org/10.1016/j.cmet.2013.11.016
  • Poy M. N., Eliasson L., Krutzfeldt J., Kuwajima S., Ma X., Macdonald P. E., Stoffel M. A pancreatic islet-specific microRNA regulates insulin secretion // Nature. 2004. V. 432. №7014. P. 226-230. https://doi.org/10.1038/nature03076
  • Martinez J. A., Milagro F. I., Claycombe K. J., Schalinske K. L. Epigenetics in adipose tissue, obesity, weight loss, and diabetes // Advances in nutrition. 2014. V. 5. №1. P. 71-81. https://doi.org/10.3945/an.113.004705
  • Ling C., Poulsen P., Simonsson S., Ronn T., Holmkvist J., Almgren P., Groop L. Genetic and epigenetic factors are associated with expression of respiratory chain component NDUFB6 in human skeletal muscle // The Journal of clinical investigation. 2007. V. 117. №11. P. 3427-3435. https://doi.org/10.1172/JCI30938
  • Caro J. F., Triester S., Patel V. K., Tapscott E. B., Frazier N. L., Dohm G. L. Liver glucokinase: decreased activity in patients with type II diabetes // Hormone and metabolic research. 1995. V. 27. №01. P. 19-22. https://doi.org/10.1055/s-2007-979899
  • Jiang M. H., Fei J., Lan M. S., Lu Z. P., Liu M., Fan W. W., Lu D. R. Hypermethylation of hepatic Gck promoter in ageing rats contributes to diabetogenic potential // Diabetologia. 2008. V. 51. №8. P. 1525-1533. https://doi.org/10.1007/s00125-008-1034-8
  • O'Keefe J. H., Vogel R., Lavie C. J., Cordain L. Exercise like a hunter-gatherer: a prescription for organic physical fitness // Progress in cardiovascular diseases. 2011. V. 53. №6. P. 471-479. https://doi.org/10.1016/j.pcad.2011.03.009
  • Alegría-Torres J. A., Baccarelli A., Bollati V. Epigenetics and lifestyle // Epigenomics. 2011. V. 3. №3. P. 267-277.
  • Woelfel J. R., Dudley-Javoroski S., Shields R. K. Precision physical therapy: exercise, the epigenome, and the heritability of environmentally modified traits // Physical therapy. 2018. V. 98. №11. P. 946-952. https://doi.org/10.1093/ptj/pzy092
  • Keleher M. R., Zaidi R., Shah S., Oakley M. E., Pavlatos C., El Idrissi S., Cheverud J. M. Maternal high-fat diet associated with altered gene expression, DNA methylation, and obesity risk in mouse offspring // PLoS One. 2018. V. 13. №2. P. e0192606. https://doi.org/10.1371/journal.pone.0192606
  • Sullivan E. L., Smith M. S., Grove K. L. Perinatal exposure to high-fat diet programs energy balance, metabolism and behavior in adulthood // Neuroendocrinology. 2011. V. 93. №1. P. 1-8. https://doi.org/10.1159/000322038
  • Knopik V. S., Maccani M. A., Francazio S., McGeary J. E. The epigenetics of maternal cigarette smoking during pregnancy and effects on child development // Development and psychopathology. 2012. V. 24. №4. P. 1377. https://dx.doi.org/10.1017%2FS0954579412000776
  • Besingi W., Johansson Á. Smoke-related DNA methylation changes in the etiology of human disease // Human molecular genetics. 2014. V. 23. №9. P. 2290-2297. https://doi.org/10.1093/hmg/ddt621
  • Ungerer M., Knezovich J., Ramsay M. In utero alcohol exposure, epigenetic changes, and their consequences // Alcohol research: current reviews. 2013. V. 35. №1. P. 37. https://www.ncbi.nlm.nih.gov/pubmed/24313163
  • Puumala S. E., Hoyme H. E. Epigenetics in pediatrics // Pediatrics in review. 2015. V. 36. №1. P. 14-21. https://doi.org/10.1542/pir.36-1-14
  • Skinner M. K., Manikkam M., Tracey R., Guerrero-Bosagna C., Haque M., Nilsson E. E. Ancestral dichlorodiphenyltrichloroethane (DDT) exposure promotes epigenetic transgenerational inheritance of obesity // BMC medicine. 2013. V. 11. №1. P. 228. http://dx.doi .org/10.1186%2F 1741-7015-11-228
  • Alonso-Magdalena P., Rivera F. J., Guerrero-Bosagna C. Bisphenol-A and metabolic diseases: epigenetic, developmental and transgenerational basis // Environmental epigenetics. 2016. V. 2. №3. P. dvw022. https://doi.org/10.1093/eep/dvw022
  • Anway M. D., Leathers C., Skinner M. K. Endocrine disruptor vinclozolin induced epigenetic transgenerational adult-onset disease // Endocrinology. 2006. V. 147. №12. P. 5515-5523. https://doi.org/10.1210/en.2006-0640
  • Kaminskas E., Farrell A. T., Wang Y. C., Sridhara R., Pazdur R. FDA Drug Approval Summary: Azacitidine (5-azacytidine, Vidaza™) for Injectable Suspension // The oncologist. 2005. V. 10. №3. P. 176-182. https://doi.org/10.1634/theoncologist.10-3-176
  • García-Calzón S., Perfilyev A., Mannistó V., de Mello V. D., Nilsson E., Pihlajamaki J., Ling C. Diabetes medication associates with DNA methylation of metformin transporter genes in the human liver // Clinical epigenetics. 2017. V. 9. №1. P. 1-9. https://doi.org/10.1186/s13148-017-0400-0
  • El-Hadidy W. F., Mohamed A. R., Mannaa H. F. Possible protective effect of procainamide as an epigenetic modifying agent in experimentally induced type 2 diabetes mellitus in rats // Alexandria Journal of Medicine. 2015. V. 51. №1. P. 65-71. https://doi.org/10.1016/j.ajme.2014.02.004
  • Balasubramanyam K., Altaf M., Varier R. A., Swaminathan V., Ravindran A., Sadhale P. P., Kundu T. K. Polyisoprenylated benzophenone, garcinol, a natural histone acetyltransferase inhibitor, represses chromatin transcription and alters global gene expression // Journal of Biological Chemistry. 2004. V. 279. №32. P. 33716-33726. https://doi.org/10.1074/jbc.M402839200
  • Kadiyala C. S. R., Zheng L., Du, Y., YohannesE., Kao H. Y., Miyagi M., Kern T. S. Acetylation of retinal histones in diabetes increases inflammatory proteins: effects of minocycline and manipulation of histone acetyltransferase (HAT) and histone deacetylase (HDAC) // Journal of Biological Chemistry. 2012. V. 287. №31. P. 25869-25880. https://doi.org/10.1074/jbc.M112.375204
  • Tedong L., Madiraju P., Martineau L. C., Vallerand D., Arnason J. T., Desire D. D., Haddad P. S. Hydro-ethanolic extract of cashew tree (Anacardium occidentale) nut and its principal compound, anacardic acid, stimulate glucose uptake in C2C12 muscle cells // Molecular nutrition & food research. 2010. V. 54. №12. P. 1753-1762. https://doi.org/10.1002/mnfr.201000045
  • Zhang D. W., Fu M., Gao S. H., Liu J. L. Curcumin and diabetes: a systematic review // Evidence-Based Complementary and Alternative Medicine. 2013. V. 2013. https://doi.org/10.1155/2013/636053
  • Wickenberg J., Ingemansson S. L., Hlebowicz J. Effects of Curcuma longa (turmeric) on postprandial plasma glucose and insulin in healthy subjects // Nutrition journal. 2010. V. 9. №1. P. 1-5. https://doi.org/10.1186/1475-2891-9-43
  • Bassett S. A., Barnett M. P. G. The role of dietary histone deacetylases (HDACs) inhibitors in health and disease // Nutrients. 2014. V. 6. №10. P. 4273-4301. https://doi.org/10.3390/nu6104273
  • Marks P. A. Histone deacetylase inhibitors: a chemical genetics approach to understanding cellular functions // Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms. 2010. V. 1799. №10-12. P. 717-725. https://doi.org/10.1016Zj.bbagrm.2010.05.008
  • Broderick J. A., Zamore P. D. MicroRNA therapeutics // Gene therapy. 2011. V. 18. №12. P. 1104-1110. https://doi.org/10.1038/gt.2011.50
  • Kolfschoten I. G. M., Roggli E., Nesca V., Regazzi R. Role and therapeutic potential of microRNAs in diabetes // Diabetes, Obesity and Metabolism. 2009. V. 11. P. 118-129. https://doi.org/10.1111/j.1463-1326.2009.01118.x
  • El Ouaamari A., Baroukh N., Martens G. A., Lebrun P., Pipeleers D., Van Obberghen E. miR-375 targets 3'-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic P-cells // Diabetes. 2008. V. 57. №10. P. 2708-2717. https://doi.org/10.2337/db07-1614
  • Trajkovski M., Hausser J., Soutschek J., Bhat B., Akin A., Zavolan M., Stoffel M. MicroRNAs 103 and 107 regulate insulin sensitivity // Nature. 2011. V. 474. №7353. P. 649-653. https://doi.org/10.1038/nature 10112
  • Lundh M., Christensen D. P., Nielsen M. D., Richardson S. J., Dahllof M. S., Skovgaard T., Mandrup-Poulsen T. Histone deacetylases 1 and 3 but not 2 mediate cytokine-induced beta cell apoptosis in INS-1 cells and dispersed primary islets from rats and are differentially regulated in the islets of type 1 diabetic children // Diabetologia. 2012. V. 55. №9. P. 2421-2431. https://doi.org/10.1007/s00125-012-2615-0
  • Yamato E. High dose of histone deacetylase inhibitors affects insulin secretory mechanism of pancreatic beta cell line // Endocrine regulations. 2018. V. 52. №1. P. 21-26.
  • Christensen D. P., Dahllof M., Lundh M., Rasmussen D. N., Nielsen M. D., Billestrup N., Mandrup-Poulsen T. Histone deacetylase (HDAC) inhibition as a novel treatment for diabetes mellitus // Molecular medicine. 2011. V. 17. №5. P. 378-390. https://doi.org/10.2119/molmed.2011.00021
  • Tiernan A. R., Champion J. A., Sambanis A. Trichostatin A affects the secretion pathways of beta and intestinal endocrine cells // Experimental cell research. 2015. V. 330. №1. P. 212-221. https://doi .org/10.1016/j.yexcr.2014.09.031
  • Khan S., Jena G. B. Protective role of sodium butyrate, a HDAC inhibitor on beta-cell proliferation, function and glucose homeostasis through modulation of p38/ERK MAPK and apoptotic pathways: study in juvenile diabetic rat // Chemico-biological interactions. 2014. V. 213. P. 1-12. https://doi.org/10.1016Zj.cbi.2014.02.001
  • Mao Y., Mohan R., Zhang S., Tang X. MicroRNAs as pharmacological targets in diabetes // Pharmacological research. 2013. V. 75. P. 37-47. https://doi.org/10.1016/j.phrs.2013.06.005
  • Vester B., Wengel J. LNA (locked nucleic acid): high-affinity targeting of complementary RNA and DNA // Biochemistry. 2004. V. 43. №42. P. 13233-13241. https://doi.org/10.1021/bi0485732
  • 0rom U. A., Kauppinen S., Lund A. H. LNA-modified oligonucleotides mediate specific inhibition of microRNA function // Gene. 2006. V. 372. P. 137-141. https://doi.org/10.1016/j.gene.2005.12.031
  • Putta S., Lanting L., Sun G., Lawson G., Kato M., Natarajan R. Inhibiting microRNA-192 ameliorates renal fibrosis in diabetic nephropathy // Journal of the American Society of Nephrology. 2012. V. 23. №3. P. 458-469. https://doi.org/10.1681/ASN.2011050485
  • Elmén J., Lindow M., Schütz S., Lawrence M., Petri A., Obad S., Kauppinen S. LNA-mediated microRNA silencing in non-human primates // Nature. 2008. V. 452. №7189. P. 896-899. https://doi .org/ 10.1038/nature06783
  • Jo S., Chen J., Xu G., Grayson T. B., Thielen L. A., Shalev A. miR-204 controls glucagon-like peptide 1 receptor expression and agonist function // Diabetes. 2018. V. 67. №2. P. 256-264. https://doi.org/10.2337/db17-0506
Еще
Статья обзорная