Salicylic acid-induced biochemical changes in Swarna (MTU 7029) variety of rice under drought stress

Автор: Verma Preeti, Azad Chandra Shekhar, Singh Pramod Kumar

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 2 т.18, 2022 года.

Бесплатный доступ

The major population of the world is dependent on rice for food. Global warming creates drought conditions mostly in north eastern countries. It is a very challenging task to cultivate drought-sensitive variety in drought-prone areas. To overcome this problem we induced changes in the drought-sensitive variety of rice (Swarna MTU 7029) for drought tolerance. Drought condition was exposed for 7 days and 14 days to SA treated and untreated 56 days old rice plants. Rice seeds were presoaked with 0.5mM SA. The experiment was designed in four groups control (untreated), drought -SA, drought +SA, and SA control. On the 7th and 14th of drought stress, SA improved drought tolerance indicator proline, carotenoid, and total soluble sugar. Starch and protein content were augmented in salicylic acid-treated plants compared to untreated rice plants under drought stress. Antioxidants such as SOD, CAT, and APX levels drastically increased in salicylic acid-treated plants during both 7th and 14th days of drought stress. Therefore, salicylic acid improved antioxidative enzymes content in MTU 7029 rice variety after 7 and 14 days of drought stress.

Еще

Drought, rice crop, abiotic stress, salicylic acid, antioxidative enzymes, pre-soaking

Короткий адрес: https://sciup.org/143178802

IDR: 143178802

Список литературы Salicylic acid-induced biochemical changes in Swarna (MTU 7029) variety of rice under drought stress

  • Aebi, H. (1984). Catalase in vitro. Methods Enzymol. 105, 121-126. doi:10.1016/s0076-6879(84)05016-3.
  • Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., and Courchamp, F. (2012). Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365-377. doi:10.1111/j.1461-0248.2011.01736.x.
  • Chaves, M. M., Flexas, J., and Pinheiro, C. (2009). Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Ann. Bot. 103, 551-560. doi:10.1093/aob/mcn125.
  • Chaves, M. M., Maroco, J. P., and Pereira, J. S. (2003). Understanding plant responses to drought - From genes to the whole plant. Funct. Plant Biol. 30, 239-264. doi:10.1071/FP02076.
  • Cruz De Carvalho, M. H. (2008). Drought stress and reactive oxygen species: Production, scavenging and signaling. Plant Signal. Behav. 3, 156-165. doi:10.4161/psb.3.3.5536.
  • Das, K., Samanta, L., and Chainy, G. B. N. (2000). A modified spectrophotometric assay of superoxide dismutase using nitrite formation by superoxide radicals. Indian J. Biochem. Biophys. 37, 201204.
  • Dat, J., Vandenabeele, S., Vranova, E., Van Montagu, M., Inze, D., and Van Breusegem, F. (2000). Dual action of the active oxygen species during plant stress responses. Cell. Mol. Life Sci. 57, 779-795. doi:10.1007/s000180050041.
  • Dien, D. C., Mochizuki, T., and Yamakawa, T. (2019). Effect of various drought stresses and subsequent recovery on proline, total soluble sugar and starch metabolisms in Rice (Oryza sativa L.) varieties. Plant Prod. Sci. 22, 530-545. doi:10.1080/1343943X.2019.1647787.
  • Dourado, M. N., Martins, P. F., Quecine, M. C., Piotto, F. A., Souza, L. A., Franco, M. R., et al. (2013). Burkholderia sp. SCMS54 reduces cadmium toxicity and promotes growth in tomato. Ann. Appl. Biol. 163, 494-507. doi:10.1111/aab.12066.
  • Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 28, 350-356. doi:10.1021/ac60111a017.
  • Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., and Basra, S. M. A. (2009). Plant Drought Stress: Effects, Mechanisms and Management. Agron. Sustain. Dev. 29, 185-212
  • Gill, S. S., and Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48, 909-930. doi:10.1016/j.plaphy.2010.08.016.
  • Hasanuzzaman, M., Nahar, K., Bhuiyan, T. F., Anee, T. I., Inafuku, M., Oku, H., et al. (2017). Salicylic Acid: An All-Rounder in Regulating Abiotic Stress Responses in Plants. In: Phytohormones -Signaling Mechanisms and Crosstalk in Plant Development and Stress Responses Edited by Mohamed El-Esawi. doi:10.5772/intechopen.68213.
  • Hayat, S., Hasan, S. A., Fariduddin, Q., and Ahmad, A. (2008). Growth of tomato (Lycopersicon esculentum) in response to salicylic acid under water stress. J. Plant Interact. 3, 297-304. doi:10.1080/17429140802320797.
  • He, Y., Liu, Y., Cao, W., Huai, M., Xu, B., & Huang, B. (2005). Effects of salicylic acid on heat tolerance associated with antioxidant metabolism in Kentucky bluegrass. Crop science, 45, 988-995. doi:10.2135/cropsci2003.0678.
  • Jaleel C.A., Manivannan P., Lakshmanan G.M., Gomathinayagam M., Panneerselvam R. (2008) Alterations in morphological parameters and photosynthetic pigment responses of Catharanthus roseus under soil water deficits. Colloids Surf B Biointerfaces. 61(2), 298-303. doi:10.1016/j.colsurfb.2007.09.008.
  • Janda T. A4 - Szalai, G. A4 - Tari, I. A4 - Paldi, E., T. A.-J. (1999). Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants. Planta 208(2). doi:10.1007/s004250050547.
  • Kamoshita, A., Babu, R. C., Boopathi, N. M., and Fukai, S. (2008). Phenotypic and genotypic analysis of drought-resistance traits for development of rice cultivars adapted to rainfed environments. F. Crop. Res. 109, 1-23. doi:10.1016/j.fcr.2008.06.010.
  • Kang Guo-Zhang, Wang Zheng-Xun, S. G.-C. (2003). Participation of H2O2 in Enhancement of Cold Chilling by Salicylic Acid in Banana Seedlings. J Integr Plant Biol. 45(5), 567-573.
  • Kang, H., and Saltveit, M. E. (2002). Chilling tolerance of maize, cucumber and rice seedling leaves and roots are differentially affected by salicylic acid. Physiologia Plantarum, 115(4), 571-576.
  • Kothakonda Krishniah, N. S. R. (2000). New avenues for augmenting and sustaining rice exports from India. Int. Rice Comm. Newsl. Year 49, 42-51. Available at: https://www.phtnet.org/research/view-abstract.asp?research_id=wq562.
  • Bates L. S., R. P. Waldren, I. D. T. (1973). Rapid determination of free proline for water-stress studies. Plant Soil 39, 205-207. Available at: https://doi.org/10.1007/BF00018060.
  • Lowry, O. H., and Randall, R. J. (1951). Protein Measurement byt the Folin Reagent. J. Biol. Chem. 193, 265-275. Available at: http://www.life.illinois.edU/biochem/355/articles/L owryJBC193_265.pdf.
  • Maruri-Lopez, I., Aviles-Baltazar, N. Y., Buchala, A., and Serrano, M. (2019). Intra and extracellular journey of the phytohormone salicylic acid. Front. Plant Sci. 10, 1-11. doi:10.3389/fpls.2019.00423.
  • Massacci, A., Nabiev, S. M., Pietrosanti, L., Nematov, S. K., and Chernikova, T. N. (2008). Response of the photosynthetic apparatus of cotton (Gossypium hirsutum) to the onset of drought stress under field conditions studied by gasexchange analysis and chlorophyll fluorescence imaging. Plant Physiol Biochem, 46(2), 189-95 doi:10.1016/j.plaphy.2007.10.006.
  • Matysik, J., Alia, A., Bhalu, B., and Mohanty, P. (2002). Molecular mechanism of quenching of reactive oxygen species by proline under stress in plants. Curr. Sci. 82(5), 525-532.
  • Moursy, M., and Hussein, M. (2008). Evaluating Water Stress Influence on Growth and Photosynthetic Pigments of Two Sugar Beet Varieties Evaluating Water Stress Influence on Growth and Photosynthetic Pigments of Two Sugar Beet Varieties. Research Journal of Agriculture and Biological Sciences, 4(6): 936941
  • Muthayya, S., Sugimoto, J. D., Montgomery, S., and Maberly, G. F. (2014). An overview of global rice production, supply, trade, and consumption. Ann. N. Y. Acad. Sci. 1324, 7-14. doi:10.1111/nyas.12540.
  • Nakano, Y., and Asada, K. (1981). Hydrogen Peroxide is Scavenged by Ascorbate-specific Peroxidase in Spinach Chloroplasts. Plant Cell Physiol. 22, 867-880. doi:10.1093/oxfordjournals.pcp.a076232.
  • Noctor, G., Reichheld, J.-P., and Foyer, C. H. (2018). ROS-related redox regulation and signaling in plants. Semin. Cell Dev. Biol. 80, 3-12. doi:https://doi.org/10.1016/j.semcdb.2017.07.013
  • Palanog, A. D., Swamy, B. P. M., Shamsudin, N. A. A., Dixit, S., Hernandez, J. E., Boromeo, T. H., et al. (2014). Grain yield QTLs with consistent-effect under reproductive-stage drought stress in rice. F. Crop. Res. 161, 46-54. doi:10.1016/j.fcr.2014.01.004.
  • Rahbarian, R., Ganjeali, A., and Najafi, F. (2011). Drought Stress Effects on Photosynthesis, Chlorophyll Fluorescence and Water Relations in Tolerant and Susceptible Chickpea (Cicer Arietinum L.) Genotypes. Acta biologica Cracoviensia. Series botanica, 53(1), 47-56 doi:10.2478/v10182-011-0007-2.
  • Rani, P. L., Reddy, R., and Rani, L. (2018). Tillering behaviour and yield of different duration rice research article tillering behaviour and yield of different duration rice varieties under different dates of sowing under aerobic culture. International Journal of Current Research, 8(5), 30143-30146. Raskin, I. (1992). Role of salicylic acid in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43, 439-463. doi:10.1146/annurev.pp.43.060192.002255.
Еще
Статья научная