Salt Stress Induced Plant Physio-biochemical and Molecular Responses: A Review

Автор: Latif Ahmad Peer, Mohd. Yaqub Bhat, Abdul Hamid Wani

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 1 т.17, 2021 года.

Бесплатный доступ

Salt stress-induced limitation in crop growth and produce is a critical problem worldwide. The prerequisite to developing salt-tolerant plants of commercial importance is understanding the plant responses to salinity exposure at physiological, biochemical, and molecular levels, integrating various approaches to understanding underlying salt tolerance mechanisms, and utilizing naturally occurring genetic resources available for salt tolerance. In this review, plant responses and associated salt tolerance, at physiological and biochemical levels through ion homeostasis, osmolyte accumulation, hormonal regulation, antioxidant responses, and mitogen-activated protein kinase cascade signaling and molecular responses through transcription factors, different gene expressions, non-coding RNA production, and epigenetic modifications are presented.

Еще

Epigenetic modifications, ion homeostasis, non-coding RNA, salinity tolerance, transcriptional factors

Короткий адрес: https://sciup.org/143173877

IDR: 143173877

Список литературы Salt Stress Induced Plant Physio-biochemical and Molecular Responses: A Review

  • Achard P., Cheng H., De Grauwe L., Decat J., Schoutteten H., Moritz T., Van Der Straeten D., Peng J., and Harberd N. P. (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science, 311, 91-94.
  • Adams Mark A., Richter Andreas, Hill Alan K., and Colmer Timothy D. (2005) Salt tolerance in Eucalyptus spp.: identity and response of putative osmolytes. Plant Cell Environ, 28, 772-787.
  • Agarwal Sheela, and Shaheen Robina (2007) Stimulation of antioxidant system and lipid peroxidation by abiotic stresses in leaves of Momordica charantia. Braz. J. Plant Physiol, 19, 149-161.
  • Ahmad P, Jaleel CA, and Sharma S. (2010) Antioxidant defense system, lipid peroxidation, rolinemetabolizing enzymes, and biochemical activities in two Morus alba genotypes subjected to NaCl stress. Russ. J. Plant Physiol, 57, 509-517.
  • Ahmad P., and Sharma Satyawati. (2008) Salt stress and phytobiochemical responses of plants. Plant Soil Environ, 54, 89-99.
  • Ahmad Raza, Lim Chan Ju, and Kwon Suk-Yoon. (2012) Glycine betaine: a versatile compound with great potential for gene pyramiding to improve crop plant performance against environmental stresses. Plant Biotechnol. Rep., 7, 49-57.
  • Aly-Salama Karima Hamed , and Al-Mutawa MM. (2010) Glutathione-triggered mitigation in salt-induced alterations in plasmalemma of onion epidermal cells. Int J Agric Biol, 11, 639-642.
  • Annunziata M. G., Ciarmiello L. F., Woodrow P., Dell'Aversana E., and Carillo P. (2019) Spatial and Temporal Profile of Glycine Betaine Accumulation in Plants Under Abiotic Stresses. Front Plant Sci, 10, 230.
  • Artur M. A. S., Rienstra J., Dennis T. J., Farrant J. M., Ligterink W., and Hilhorst H. (2019) Structural Plasticity of Intrinsically Disordered LEA Proteins from Xerophyta schlechteri Provides Protection In Vitro and In Vivo. Front Plant Sci, 10, 1272.
  • Asada Kozi. (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol., 141, 391-396.
  • Ashraf M., and Foolad M. R. (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot., 59, 206-216.
  • Ashraf M., and Harris P. J. C. (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci., 166, 3-16.
  • Babiychuk E., Kushnir S., Belles-Boix E., Van Montagu M., and Inze D. (1995) Arabidopsis thaliana NADPH oxidoreductase homologs confer tolerance of yeasts toward the thiol-oxidizing drug diamide. J. Biol. Chem., 270, 26224-26231.
  • Badawi G. H., Kawano N., Yamauchi Y., Shimada E., Sasaki R., Kubo A., and Tanaka K. (2004) Overexpression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit. Physiol. Plant., 121, 231-238.
  • Baniasadi Fatemeh, Saffari Vahid Reza, and Maghsoudi Moud Ali Akbar. (2018) Physiological and growth responses of Calendula officinalis L. plants to the interaction effects of polyamines and salt stress. Sci. Hortic., 234, 312-317.
  • Baral A., Shruthi K. S., and Mathew M. K. (2015) Vesicular trafficking and salinity responses in plants. IUBMB Life, 67, 677-686.
  • Bassil E., and Blumwald E. (2014) The ins and outs of intracellular ion homeostasis: NHX-type cation/H(+) transporters. Curr. Opin. Plant Biol., 22, 1-6.
  • Bassil E., Zhang S., Gong H., Tajima H., and Blumwald E. (2019) Cation Specificity of Vacuolar NHXType Cation/H(+) Antiporters. Plant Physiol., 179, 616-629.
  • Bazihizina N., Colmer T. D., Cuin T. A., Mancuso S., and Shabala S. (2019) Friend or Foe? Chloride Patterning in Halophytes. Trends Plant Sci., 24, 142-151.
  • Ben Ahmed C., Ben Rouina B., Sensoy S., Boukhriss M., and Ben Abdullah F. (2010) Exogenous proline effects on photosynthetic performance and antioxidant defense system of young olive tree. J. Agric. Food Chem., 58, 4216-4222.
  • Ben Rejeb K., Lefebvre-De Vos D., Le Disquet I., Leprince A. S., Bordenave M., Maldiney R., Jdey A., Abdelly C., and Savoure A. (2015) Hydrogen peroxide produced by NADPH oxidases increases proline accumulation during salt or mannitol stress in Arabidopsis thaliana. New Phytol., 208, 1138-1148.
  • Borsani O., Zhu J., Verslues P. E., Sunkar R., and Zhu J. K. (2005) Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell, 123, 1279-1291.
  • Bose J., Rodrigo-Moreno A., and Shabala S. (2014) ROS homeostasis in halophytes in the context of salinity stress tolerance. J. Exp. Bot., 65, 1241-1257.
  • Buckley T. N. (2019) How do stomata respond to water status? New Phytol., 224, 21-36.
  • Bueno M., and Cordovilla M. P. (2019) Polyamines in Halophytes. Front Plant Sci, 10, 439.
  • Byrt C. S., Munns R., Burton R. A., Gilliham M., and Wege S. (2018) Root cell wall solutions for crop plants in saline soils. Plant Sci., 269, 47-55.
  • Byrt C. S., Zhao M., Kourghi M., Bose J., Henderson S. W., Qiu J., Gilliham M., Schultz C., Schwarz M., Ramesh S. A., Yool A., and Tyerman S. (2017) Non-selective cation channel activity of aquaporin AtPIP2;1 regulated by Ca(2+) and pH. Plant Cell Environ, 40, 802-815.
  • Cao W. H., Liu J., He X. J., Mu R. L., Zhou H. L., Chen S. Y., and Zhang J. S. (2007) Modulation of responses. Plant Physiol., 143, 707-719.
  • Cayuela E, Perez‐Alfocea F, Caro M, and Bolarin MC (1996) Priming of seeds with NaCl induces physiological changes in tomato plants grown under salt stress. Physiol Plant., 96, 231-236.
  • Cha-Um Suriyan, and Kirdmanee Chalermpol. (2010) Effect of glycinebetaine on proline, water use, and photosynthetic efficiencies, and growth of rice seedlings under salt stress. TURK J AGRIC FOR., 34, 517-527.
  • Chen H., Feng H., Zhang X., Zhang C., Wang T., and Dong J. (2019) An Arabidopsis E3 ligase HUB2 increases histone H2B monoubiquitination and enhances drought tolerance in transgenic cotton. Plant Biotechnol. J., 17, 556-568.
  • Chen M., Yang Z., Liu J., Zhu T., Wei X., Fan H., and Wang B. (2018) Adaptation Mechanism of Salt Excluders under Saline Conditions and Its Applications. Int J Mol Sci, 19, 3668.
  • Cheng M. C., Liao P. M., Kuo W. W., and Lin T. P. (2013) The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiol., 162, 1566-1582.
  • Choi H., Hong J., Ha J., Kang J., and Kim S. Y. (2000) ABFs, a family of ABA-responsive element binding factors. J. Biol. Chem., 275, 1723-1730.
  • Christmann A., Grill E., and Huang J. (2013) Hydraulic signals in long-distance signaling. Curr. Opin. Plant Biol., 16, 293-300.
  • Colcombet J., and Hirt H. (2008) Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochem. J., 413, 217-226.
  • Colebrook E. H., Thomas S. G., Phillips A. L., and Hedden P. (2014) The role of gibberellin signaling in plant responses to abiotic stress. J. Exp. Biol., 217, 67-75.
  • Conde A., Regalado A., Rodrigues D., Costa J. M., Blumwald E., Chaves M. M., and Geros H. (2015) Polyols in grape berry: transport and metabolic adjustments as a physiological strategy for waterdeficit stress tolerance in grapevine. J. Exp. Bot., 66, 889-906.
  • Conti L., Price G., O'Donnell E., Schwessinger B., Dominy P., and Sadanandom A. (2008) Small ubiquitin-like modifier proteases OVERLY TOLERANT TO SALT1 and -2 regulate salt stress responses in Arabidopsis. Plant Cell, 20, 2894-2908.
  • Cui F., Liu L., Zhao Q., Zhang Z., Li Q., Lin B., Wu Y., Tang S., and Xie Q. (2012) Arabidopsis ubiquitin conjugase UBC32 is an ERAD component that functions in brassinosteroid-mediated salt stress tolerance. Plant Cell, 24, 233-244.
  • Cumming A.C. (1999) LEA proteins. In Shewry, Peter R (ed.), Seed Proteins (Kluwar Dordrecht). da Silva J. M., and Arrabaca M. C. (2004) Contributions of soluble carbohydrates to the osmotic adjustment in the C4 grass Setaria sphacelata: a comparison between rapidly and slowly imposed water stress. J. Plant Physiol., 161, 551-555.
  • Dat J., Vandenabeele S., Vranova E., Van Montagu M., Inze D., and Van Breusegem F. (2000) Dual action of the active oxygen species during plant stress responses. Cell. Mol. Life Sci., 57, 779-795.
  • Davletova Sholpan, Rizhsky Ludmila, Liang Hongjian, Shengqiang Zhong, Oliver David J, Coutu Jesse, Shulaev Vladimir, Schlauch Karen, and Mittler Ron %J The Plant Cell. (2005) Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell, 17, 268-281.
  • Del Rio L. A., and Lopez-Huertas E. (2016) ROS Generation in Peroxisomes and its Role in Cell Signaling. Plant Cell Physiol., 57, 1364-1376.
  • Demidchik V. (2014) Mechanisms and physiological roles of K+ efflux from root cells. J. Plant Physiol., 171, 696-707.
  • Demidchik V. (2018) ROS-Activated Ion Channels in Plants: Biophysical Characteristics, Physiological Functions and Molecular Nature. Int J Mol Sci, 19, 1263.
  • Demidchik V., Cuin T. A., Svistunenko D., Smith S. J., Miller A. J., Shabala S., Sokolik A., and Yurin V. (2010) Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. J. Cell Sci., 123, 1468-1479.
  • Ding Hai‐Dong, Zhang Xiao‐Hua, Xu Shu‐Cheng, Sun Li‐Li, Jiang Ming‐Yi, Zhang A‐Ying, and Jin Yin‐Gen. (2009) Induction of protection against paraquat‐induced oxidative damage by abscisic acid in maize leaves is mediated through mitogenactivated protein kinase. J. Integr. Plant Biol., 51, 961-972.
  • Doganlar Zeynep, Demir Koksal, Başak Hakan, and Gul Iftikhar. (2010) Effects of salt stress on pigment and total soluble protein contents of three different tomato cultivars. Afr. J. Agric. Res., 15, 2056-2065.
  • Dong W., Wang M., Xu F., Quan T., Peng K., Xiao L., and Xia G. (2013) Wheat oxophytodienoate reductase gene TaOPR1 confers salinity tolerance via enhancement of abscisic acid signaling and reactive oxygen species scavenging. Plant Physiol., 161, 1217-1228.
  • Droillard M., Boudsocq M., Barbier-Brygoo H., and Lauriere C. (2002) Different protein kinase families are activated by osmotic stresses in Arabidopsis thaliana cell suspensions. Involvement of the MAP kinases AtMPK3 and AtMPK6. FEBS Lett., 527, 43-50.
  • Droillard M. J., Boudsocq M., Barbier-Brygoo H., and Lauriere C. (2004) Involvement of MPK4 in osmotic stress response pathways in cell suspensions and plantlets of Arabidopsis thaliana: activation by hypoosmolarity and negative role in hyperosmolarity tolerance. FEBS Lett., 574, 42-48.
  • Duarte K. E., de Souza W. R., Santiago T. R., Sampaio B. L., Ribeiro A. P., Cotta M. G., da Cunha Badb, Marraccini P. R. R., Kobayashi A. K., and Molinari H. B. C. (2019) Identification and characterization of core abscisic acid (ABA) signaling components and their gene expression profile in response to abiotic stresses in Setaria viridis. Sci Rep, 9, 4028.
  • Eichten S. R., Schmitz R. J., and Springer N. M. (2014) Epigenetics: Beyond Chromatin Modifications and Complex Genetic Regulation. Plant Physiol., 165, 933-947.
  • El-Mashad A. A., and Mohamed H. I. (2012) Brassinolide alleviates salt stress and increases antioxidant activity of cowpea plants (Vigna sinensis). Protoplasma, 249, 625-635.
  • El-Shintinawy F., and El-Shourbagy M. N. (2001) Alleviation of Changes in Protein Metabolism in NaCl-Stressed Wheat Seedlings by Thiamine. Biol. Plant., 44, 541-545.
  • El-Tayeb MA (2005) Response of barley grains to the interactive e. ect of salinity and salicylic acid. Plant Growth Regul., 45, 215-224.
  • El Mahi H., Perez-Hormaeche J., De Luca A., Villalta I., Espartero J., Gamez-Arjona F., Fernandez J. L., Bundo M., Mendoza I., Mieulet D., Lalanne E., Lee S. Y., Yun D. J., Guiderdoni E., Aguilar M., Leidi E. O., Pardo J. M., and Quintero F. J. (2019) A Critical Role of Sodium Flux via the Plasma Membrane Na(+)/H(+) Exchanger SOS1 in the Salt Tolerance of Rice. Plant Physiol., 180, 1046-1065.
  • Endo A., Sawada Y., Takahashi H., Okamoto M., Ikegami K., Koiwai H., Seo M., Toyomasu T., Mitsuhashi W., Shinozaki K., Nakazono M., Kamiya Y., Koshiba T., and Nambara E. (2008) Drought induction of Arabidopsis 9-cisepoxycarotenoid dioxygenase occurs in vascular parenchyma cells. Plant Physiol., 147, 1984-1993.
  • Espasandin Fabiana D, Calzadilla Pablo I, Maiale Santiago J, Ruiz Oscar A, and Sansberro Pedro A %J Journal of plant growth regulation. (2018) Overexpression of the arginine decarboxylase gene improves tolerance to salt stress in Lotus tenuis plants. J. Plant Growth Regul., 37, 156-165.
  • Flowers T. J. (2004) Improving crop salt tolerance. J Exp Bot, 55, 307-319.
  • Flowers T. J., and Yeo A. R. (1995) Breeding for Salinity Resistance in Crop Plants: Where Next? Funct. Plant Biol., 22, 875-884.
  • Foyer C. H, Lopez‐Delgado H., Dat J. F, and Scott I. M. (1997) Hydrogen peroxide‐and lutathioneassociated mechanisms of acclimatory stress tolerance and signalling. Physiol. Plant., 100, 241-254.
  • Fricke W., Akhiyarova G., Veselov D., and Kudoyarova G. (2004) Rapid and tissue-specific changes in ABA and in growth rate in response to salinity in barley leaves. J. Exp. Bot., 55, 1115-1123.
  • Fujita Y., Yoshida T., and Yamaguchi-Shinozaki K. (2013) Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants. Physiol. Plant., 147, 15-27.
  • Furuichi T., Tatsumi H., and Sokabe M. (2008) Mechano-sensitive channels regulate the stomatal aperture in Vicia faba. Biochem. Biophys. Res. Commun., 366, 758-762.
  • Furuki T., Shimizu T., Chakrabortee S., Yamakawa K., Hatanaka R., Takahashi T., Kikawada T., Okuda T., Mihara H., Tunnacliffe A., and Sakurai M. (2012) Effects of Group 3 LEA protein model peptides on desiccation-induced protein aggregation. Biochim. Biophys. Acta, 1824, 891-897.
  • Geilfus C. M. (2018) Review on the significance of chlorine for crop yield and quality. Plant Sci., 270, 114-122.
  • Geissler N., Hussin S., and Koyro H. W. (2010) Elevated atmospheric CO2 concentration enhances salinity tolerance in Aster tripolium L. Planta, 231, 583-594.
  • Geng Y., Wu R., Wee C. W., Xie F., Wei X., Chan P. M., Tham C., Duan L., and Dinneny J. R. (2013) A spatio-temporal understanding of growth regulation during the salt stress response in Arabidopsis. Plant Cell, 25, 2132-2154.
  • Giraud E., Ho L. H., Clifton R., Carroll A., Estavillo G., Tan Y. F., Howell K. A., Ivanova A., Pogson B. J., Millar A. H., and Whelan J. (2008) The absence of ALTERNATIVE OXIDASE1a in Arabidopsis results in acute sensitivity to combined light and drought stress. Plant Physiol., 147, 595-610.
  • Giri J. (2011) Glycinebetaine and abiotic stress tolerance in plants. Plant Signal Behav, 6, 1746-1751.
  • Gleeson Deirdre, Lelu-Walter Marie-Anne, and Parkinson Michael. (2005) Overproduction of proline in transgenic hybrid larch (Larix x leptoeuropaea (Dengler)) cultures renders them tolerant to cold, salt and frost. Mol. Breed., 15, 21-29.
  • Goyal Kshamata, Walton Laura J, and Tunnacliffe Alan (2005) LEA proteins prevent protein aggregation due to water stress. Biochem. J., 388, 151-157.
  • Groß F., Durner J., and Gaupels F. (2013) Nitric oxide, antioxidants and prooxidants in plant defence responses. Front Plant Sci, 4, 419.
  • Guan Q., Tan B., Kelley T. M., Tian J., and Chen S. (2020) Physiological Changes in Mesembryanthemum crystallinum During the C3 to CAM Transition Induced by Salt Stress. Front Plant Sci, 11, 283.
  • Guo K. M., Babourina O., Christopher D. A., Borsic T., and Rengel Z. (2010) The cyclic nucleotide-gated channel AtCNGC10 transports Ca2+ and Mg2+ in Arabidopsis. Physiol. Plant., 139, 303-312.
  • Guo Q., Liu L., and Barkla B. J. (2019) Membrane Lipid Remodeling in Response to Salinity. Int J Mol Sci, 20, 4264.
  • Gupta Bhaskar, Gupta Kamala, and Sengupta Dibyendu Narayan. (2012) Spermidine-mediated in vitro phosphorylation of transcriptional regulator OSBZ8 by SNF1-type serine/threonine protein kinase SAPK4 homolog in indica rice. Acta Physiol. Plant., 34, 1321-1336.
  • Gutteridge J. M., and Halliwell B. (2000) Free radicals and antioxidants in the year 2000. A historical look to the future. Ann. N. Y. Acad. Sci., 899, 136- 147.
  • Hamel L. P., Nicole M. C., Sritubtim S., Morency M. J., Ellis M., Ehlting J., Beaudoin N., Barbazuk B., Klessig D., Lee J., Martin G., Mundy J., Ohashi Y., Scheel D., Sheen J., Xing T., Zhang S., Seguin A., and Ellis B. E. (2006) Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. Trends Plant Sci., 11, 192-198.
  • Hand Steven C, Menze Michael A, Toner Mehmet, Boswell Leaf, and Moore Daniel. (2011) LEA proteins during water stress: not just for plants anymore. Annu. Rev. Physiol, 73, 115-134.
  • Hanin M., Ebel C., Ngom M., Laplaze L., and Masmoudi K. (2016) New Insights on Plant Salt Tolerance Mechanisms and Their Potential Use for Breeding. Front Plant Sci, 7, 1787.
  • Hanson A. D., Rathinasabapathi B., Rivoal J., Burnet M., Dillon M. O., and Gage D. A. (1994) Osmoprotective compounds in the Plumbaginaceae: a natural experiment in metabolic engineering of stress tolerance. Proc Natl Acad Sci U S A, 91, 306-310.
  • Hasegawa P. M., Bressan R. A., Zhu J. K., and Bohnert H. J. (2000) Plant Cellular and Molecular Responses to High Salinity. Annu. Rev. Plant Physiol., 51, 463-499.
  • Hoque M. A., Banu M. N., Okuma E., Amako K., Nakamura Y., Shimoishi Y., and Murata Y. (2007) Exogenous proline and glycinebetaine increase NaCl-induced ascorbate-glutathione cycle enzyme activities, and proline improves salt tolerance more than glycinebetaine in tobacco Bright Yellow-2 suspension-cultured cells. J. Plant Physiol., 164, 1457-1468.
  • Hu Y., Chen L., Wang H., Zhang L., Wang F., and Yu D. (2013) Arabidopsis transcription factor WRKY8 functions antagonistically with its interacting partner VQ9 to modulate salinity stress tolerance. Plant J., 74, 730-745.
  • Huang C. F., Miki D., Tang K., Zhou H. R., Zheng Z., Chen W., Ma Z. Y., Yang L., Zhang H., Liu R., He X. J., and Zhu J. K. (2013) A Pre-mRNA-splicing factor is required for RNA-directed DNA methylation in Arabidopsis. PLoS Genet., 9, e1003779.
  • Hundertmark M., Popova A. V., Rausch S., Seckler R., and Hincha D. K. (2012) Influence of drying on the secondary structure of intrinsically disordered and globular proteins. Biochem. Biophys. Res. Commun., 417, 122-128.
  • Hussain Town, Chandrasekhar Thummala, Hazara Mahamed, Sultan Zafar, Saleh Brhan, and Ghanta Rama. (2007) Recent advances in salt stress biology - a review. Mol. Biol. Rev., 3, 8-13.
  • Hwa Chi-Min, and Yang Xian-Ci. (2007) The AtMKK3 pathway mediates ABA and salt signaling in Arabidopsis. Acta Physiol. Plant., 30, 277-286.
  • Isayenkov S. V., and Maathuis F. J. M. (2019) Plant Salinity Stress: Many Unanswered Questions Remain. Front Plant Sci, 10, 80.
  • Ishikawa Tetsuya, Cuin Tracey Ann, Bazihizina Nadia, and Shabala Sergey. (2018a) Chapter Nine - Xylem Ion Loading and Its Implications for Plant Abiotic Stress Tolerance. In Maurel, Christophe (ed.), Adv. Bot. Res. (Academic Press).
  • Salt Stress Induced Plant Physio-biochemical and Molecular Responses... Ishikawa Tetsuya, Cuin Tracey Ann, Bazihizina Nadia, and Shabala Sergey. (2018b) Xylem Ion Loading and Its Implications for Plant Abiotic Stress Tolerance. In Maurel, Christophe (ed.), Membrane Transport in Plants (Academic Press).
  • Islam M. O., Kato H., Shima S., Tezuka D., Matsui H., and Imai R. (2019) Functional identification of a rice trehalase gene involved in salt stress tolerance. Gene, 685, 42-49.
  • Jabnoune M., Espeout S., Mieulet D., Fizames C., Verdeil J. L., Conejero G., Rodriguez-Navarro A., Sentenac H., Guiderdoni E., Abdelly C., and Very A. A. (2009) Diversity in expression patterns and functional properties in the rice HKT transporter family. Plant Physiol., 150, 1955-1971.
  • Jagendorf A. T., and Takabe T. (2001) Inducers of glycinebetaine synthesis in barley. Plant Physiol., 127, 1827-1835.
  • Jaleel Cheruth Abdul, Gopi Ragupathi, Kishorekumar Ashok, Manivannan Paramasivam, Sankar Beemarao, and Panneerselvam Rajaram. (2008) Interactive effects of triadimefon and salt stress on antioxidative status and ajmalicine accumulation in Catharanthus roseus. Acta Physiol. Plant., 30, 287.
  • James R. A., Blake C., Byrt C. S., and Munns R. (2011) Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. J. Exp. Bot., 62, 2939-2947.
  • Jayakannan M., Bose J., Babourina O., Rengel Z., and Shabala S. (2013) Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K+ loss via a GORK channel. J. Exp. Bot., 64, 2255-2268.
  • Ji M., Wang K., Wang L., Chen S., Li H., Ma C., and Wang Y. (2019) Overexpression of a SAdenosylmethionine Decarboxylase from Sugar Beet M14 Increased Araidopsis Salt Tolerance. Int J Mol Sci, 20(8). 1990.
  • Jiang A. L., Cheng Y., Li J., and Zhang W. (2008) A zincdependent nuclear endonuclease is responsible for DNA laddering during salt-induced programmed cell death in root tip cells of rice. J. Plant Physiol., 165, 1134-1141.
  • Jiang C., Belfield E. J., Mithani A., Visscher A., Ragoussis J., Mott R., Smith J. A., and Harberd N. P. (2012) ROS-mediated vascular homeostatic control of root-to-shoot soil Na delivery in Arabidopsis. Embo J, 31, 4359-4370.
  • Johnson R. R., Wagner R. L., Verhey S. D., and Walker-Simmons M. K. (2002) The abscisic acidresponsive kinase PKABA1 interacts with a seedspecific abscisic acid response element-binding factor, TaABF, and phosphorylates TaABF peptide sequences. Plant Physiol., 130, 837-846.
  • Kadioglu Asim, Terzi Rabiye, Saruhan Neslihan, and Saglam Aykut. (2012) Current advances in the investigation of leaf rolling caused by biotic and abiotic stress factors. Plant Science, 182, 42-48.
  • Kang D‐J, Seo Y‐J, Lee J‐D, Ishii R, Kim KU, Shin DH, Park SK, Jang SW, Lee I‐J , and Science Crop. (2005) Jasmonic acid differentially affects growth, ion uptake and abscisic acid concentration in salttolerant and salt‐sensitive rice cultivars. J. Agron, 191, 273-282.
  • Karan R., DeLeon T., Biradar H., and Subudhi P. K. (2012) Salt stress induced variation in DNA methylation pattern and its influence on gene expression in contrasting rice genotypes. PloS One, 7, e40203.
  • Kasuga M., Liu Q., Miura S., Yamaguchi-Shinozaki K., and Shinozaki K. (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat. Biotechnol., 17, 287-291.
  • Kazan K. (2015) Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci., 20, 219-229.
  • Kerepesi Ildikó, and Galiba Gábor. (2000) Osmotic and Salt Stress-Induced Alteration in Soluble Carbohydrate Content in Wheat Seedlings. Crop Sci., 40, 482-487.
  • Kim S. E., Lee C. J., Ji C. Y., Kim H. S., Park S. U., Lim Y. H., Park W. S., Ahn M. J., Bian X., Xie Y., Guo X., and Kwak S. S. (2019) Transgenic sweetpotato plants overexpressing tocopherol cyclase display enhanced α-tocopherol content and abiotic stress tolerance. Plant Physiol. Biochem., 144, 436-444.
  • Kim S. H., Ahn Y. O., Ahn M. J., Lee H. S., and Kwak S. S. (2012) Down-regulation of beta-carotene hydroxylase increases beta-carotene and total carotenoids enhancing salt stress tolerance in transgenic cultured cells of sweetpotato. Phytochemistry, 74, 69-78.
  • Kim S., Kang J. Y., Cho D. I., Park J. H., and Kim S. Y. (2004) ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant J., 40, 75-87.
  • Kobayashi N. I., Yamaji N., Yamamoto H., Okubo K., Ueno H., Costa A., Tanoi K., Matsumura H., Fujii-Kashino M., Horiuchi T., Nayef M. A., Shabala S., An G., Ma J. F., and Horie T. (2017) OsHKT1;5 mediates Na(+) exclusion in the vasculature to protect leaf blades and reproductive tissues from salt toxicity in rice. Plant J., 91, 657-670.
  • Koffler Barbara Eva, Luschin-Ebengreuth Nora, and Zechmann Bernd. (2015) Compartment specific changes of the antioxidative status in Arabidopsis thaliana during salt stress. J. Plant Biol., 58, 8-16.
  • Kong X., Pan J., Zhang M., Xing X., Zhou Y., Liu Y., Li D., and Li D. (2011) ZmMKK4, a novel group C mitogen-activated protein kinase kinase in maize (Zea mays), confers salt and cold tolerance in transgenic Arabidopsis. Plant Cell Environ, 34, 1291-1303.
  • Kronzucker H. J., and Britto D. T. (2011) Sodium transport in plants: a critical review. New Phytol., 189, 54-81.
  • Lee Geungjoo, Carrow Robert N., Duncan Ronny R., Eiteman Mark A., and Rieger Mark W. (2008) Synthesis of organic osmolytes and salt tolerance mechanisms in Paspalum vaginatum. Environ. Exp. Bot., 63, 19-27.
  • Lee J. S., and Ellis B. E. (2007) Arabidopsis MAPK phosphatase 2 (MKP2) positively regulates oxidative stress tolerance and inactivates the MPK3 and MPK6 MAPKs. J. Biol. Chem., 282, 25020-25029.
  • Lee J. S., Wang S., Sritubtim S., Chen J. G., and Ellis B. E. (2009) Arabidopsis mitogen-activated protein kinase MPK12 interacts with the MAPK phosphatase IBR5 and regulates auxin signaling. Plant J., 57, 975-985.
  • Li Z., Wang W., Li G., Guo K., Harvey P., Chen Q., Zhao Z., Wei Y., Li J., and Yang H. (2016) MAPKmediated regulation of growth and essential oil composition in a salt-tolerant peppermint (Mentha piperita L.) under NaCl stress. Protoplasma, 253, 1541-1556.
  • Lim G. H., Zhang X., Chung M. S., Lee D. J., Woo Y. M., Cheong H. S., and Kim C. S. (2010) A putative novel transcription factor, AtSKIP, is involved in abscisic acid signalling and confers salt and osmotic tolerance in Arabidopsis. New Phytol., 185, 103-113.
  • Liu J., Cui L., Xie Z., Zhang Z., Liu E., and Peng X. (2019a) Two NCA1 isoforms interact with catalase in a mutually exclusive manner to redundantly regulate its activity in rice. BMC Plant Biol., 19, 105.
  • Liu Xiaojing, Duan Deyu, Li Weiqiang, Tadano T., and Khan M. Ajmal. (2006) A Comparative Study On Responses Of Growth And Solute Composition In Halophytes Suaeda Salsa And Limonium Bicolor To Salinity. In Ecophysiology of High Salinity Tolerant Plants, edited by Khan, M. Ajmal and Darrell J. Weber, 135-143. Dordrecht, Springer Netherlands.
  • Liu Y., Li D., Yan J., Wang K., Luo H., and Zhang W. (2019b) MiR319 mediated salt tolerance by ethylene. Plant Biotechnol. J., 17, 2370-2383.
  • Liu Y., Yang M., Cheng H., Sun N., Liu S., Li S., Wang Y., Zheng Y., and Uversky V. N. (2017) The effect of phosphorylation on the salt-tolerance-related functions of the soybean protein PM18, a member of the group-3 LEA protein family. Biochim Biophys Acta Proteins Proteom, 1865, 1291-1303.
  • Liu Yang, Wang Li, Xing Xin, Sun Liping, Pan Jiaowen, Salt Stress Induced Plant Physio-biochemical and Molecular Responses... Kong Xiangpei, Zhang Maoying, and Li Dequan (2013) ZmLEA3, a multifunctional group 3 LEA protein from maize (Zea mays L.), is involved in biotic and abiotic stresses. Plant Cell Physiol., 54, 944-959.
  • Lokhande V H, and Penna S. (2012) Prospects of halophytes in understanding and managing abiotic stress tolerance. In Ahmad P, and Prasad M. (ed.), Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change (Springer, New York).
  • Lopez-Huertas E., Charlton W. L., Johnson B., Graham I. A., and Baker A. (2000) Stress induces peroxisome biogenesis genes. EMBO J., 19, 6770-6777.
  • Luo D., Hou X., Zhang Y., Meng Y., Zhang H., Liu S., Wang X., and Chen R. (2019) CaDHN5, a Dehydrin Gene from Pepper, Plays an Important Role in Salt and Osmotic Stress Responses. Int J Mol Sci, 20, 1989.
  • Luo D., Niu X., Yu J., Yan J., Gou X., Lu B. R., and Liu Y. (2012a) Rice choline monooxygenase (OsCMO) protein functions in enhancing glycine betaine biosynthesis in transgenic tobacco but does not accumulate in rice (Oryza sativa L. ssp. japonica). Plant Cell Rep., 31, 1625-1635.
  • Luo M., Wang Y. Y., Liu X., Yang S., Lu Q., Cui Y., and Wu K. (2012b) HD2C interacts with HDA6 and is involved in ABA and salt stress response in Arabidopsis. J. Exp. Bot., 63, 3297-3306.
  • Ma L., Zhang H., Sun L., Jiao Y., Zhang G., Miao C., and Hao F. (2012) NADPH oxidase AtrbohD and AtrbohF function in ROS-dependent regulation of Na(+)/K(+)homeostasis in Arabidopsis under salt stress. J. Exp. Bot., 63, 305-317.
  • Magome H., Yamaguchi S., Hanada A., Kamiya Y., and Oda K. (2008) The DDF1 transcriptional activator upregulates expression of a gibberellindeactivating gene, GA2ox7, under high-salinity stress in Arabidopsis. Plant J., 56, 613-626.
  • Massacci A., Nabiev S. M., Pietrosanti L., Nematov S. K., Chernikova T. N., Thor K., and Leipner J. (2008) Response of the photosynthetic apparatus of cotton (Gossypium hirsutum) to the onset of drought stress under field conditions studied by gas-exchange analysis and chlorophyll fluorescence imaging. Plant Physiol Biochem, 46, 189-195.
  • Matysik Jörg, Alia Alia, Bhalu B., and Mohanty Prasanna. (2002) Molecular mechanism of quenching of reactive oxygen species by proline under stress in plants. Curr. Sci., 82, 525-532.
  • Megdiche W., Hessini K., Gharbi F., Jaleel C. A., Ksouri R., and Abdelly C. (2008) Photosynthesis and photosystem 2 efficiency of two salt-adapted halophytic seashore Cakile maritima ecotypes. Photosynthetica, 46, 410-419.
  • Mian A., Oomen R. J., Isayenkov S., Sentenac H., Maathuis F. J., and Very A. A. (2011) Overexpression of an Na+-and K+-permeable HKT transporter in barley improves salt tolerance. Plant J., 68, 468-479.
  • Miller G., Schlauch K., Tam R., Cortes D., Torres M. A., Shulaev V., Dangl J. L., and Mittler R. (2009) The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Sci Signal, 2, ra45.
  • Miller G., Suzuki N., Ciftci-Yilmaz S., and Mittler R. (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ, 33, 453-467.
  • Misra Neelam, and Misra Rahul (2012) Salicylic acid changes plant growth parameters and proline metabolism in Rauwolfia serpentina leaves grown under salinity stress. AEJAES, 12, 1601-1609.
  • Missihoun T. D., Willee E., Guegan J. P., Berardocco S., Shafiq M. R., Bouchereau A., and Bartels D. (2015) Overexpression of ALDH10A8 and ALDH10A9 Genes Provides Insight into Their Role in Glycine Betaine Synthesis and Affects Primary Metabolism in Arabidopsis thaliana. Plant Cell Physiol., 56, 1798-1807.
  • Mizoi J., Shinozaki K., and Yamaguchi-Shinozaki K. (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Biochim. Biophys. Acta, 1819, 86-96.
  • Mostofa M. G., Hossain M. A., and Fujita M. (2015) Trehalose pretreatment induces salt tolerance in rice (Oryza sativa L.) seedlings: oxidative damage and co-induction of antioxidant defense and glyoxalase systems. Protoplasma, 252, 461-475.
  • Munir Neelma, and Aftab Faheem (2011) Enhancement of salt tolerance in sugarcane by ascorbic acid pretreatment. Afr. J. Biotechnol, 10, 18362-18370.
  • Munne-Bosch S., and Alegre L. (2003) Drought-induced changes in the redox state of alpha-tocopherol, ascorbate, and the diterpene carnosic acid in chloroplasts of Labiatae species differing in carnosic acid contents. Plant Physiol., 131, 1816-1825.
  • Munns R., Greenway H., and Kirst G. O. (1983) Halotolerant Eukaryotes. In Lange, O. L., P. S. Nobel, C. B. Osmond and H. Ziegler (eds.), Physiological Plant Ecology III (Springer Berlin Heidelberg, Berlin, Heidelberg).
  • Munns R., James R. A., Xu B., Athman A., Conn S. J., Jordans C., Byrt C. S., Hare R. A., Tyerman S. D., Tester M., Plett D., and Gilliham M. (2012) Wheat grain yield on saline soils is improved by an ancestral Na(+) transporter gene. Nat. Biotechnol., 30, 360-364.
  • Munns R., Passioura J. B., Guo J., Chazen O., and Cramer G. R. (2000) Water relations and leaf expansion: importance of time scale. J. Exp. Bot., 51, 1495-1504.
  • Munns R., and Tester M. (2008) Mechanisms of salinity tolerance. Annu. Rev. Plant Biol., 59, 651-681.
  • Naka Y., Watanabe K., Sagor G. H., Niitsu M., Pillai M. A., Kusano T., and Takahashi Y. (2010) Quantitative analysis of plant polyamines including thermospermine during growth and salinity stress. Plant Physiol. Biochem., 48, 527-533.
  • Nakashima K., Tran L. S., Van Nguyen D., Fujita M., Maruyama K., Todaka D., Ito Y., Hayashi N., Shinozaki K., and Yamaguchi-Shinozaki K. (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J., 51, 617-630.
  • Nath Manoj, Bhatt Deepesh, Jain Ajay, Saxena Saurabh C., Saifi Shabnam K., Yadav Sandep, Negi Manisha, Prasad Ram, and Tuteja Narendra. (2019) Salt stress triggers augmented levels of Na+, Ca2+ and ROS and alter stress-responsive gene expression in roots of CBL9 and CIPK23 knockout mutants of Arabidopsis thaliana. Environ. Exp. Bot., 161, 265-276.
  • Nazar R., Iqbal N., Syeed S., and Khan N. A. (2011) Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. J. Plant Physiol., 168, 807-815.
  • Ong R. G., Higbee A., Bottoms S., Dickinson Q., Xie D., Smith S. A., Serate J., Pohlmann E., Jones A. D., Coon J. J., Sato T. K., Sanford G. R., Eilert D., Oates L. G., Piotrowski J. S., Bates D. M., Cavalier D., and Zhang Y. (2016) Inhibition of microbial biofuel production in drought-stressed switchgrass hydrolysate. Biotechnol Biofuels, 9, 237.
  • Ouyang S., He S., Liu P., Zhang W., Zhang J., and Chen S. (2011) The role of tocopherol cyclase in salt stress tolerance of rice (Oryza sativa). Sci China Life Sci, 54, 181-188.
  • Ozturk A, and Unlukara A. (2004) Effects of salt stress and water deficit on plant growth and essentialoil content of lemon balm (Melissa officinalis L.). Pak. J. Bot., 36, 787-792.
  • Parida A. K., and Das A. B. (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol. Environ. Saf., 60, 324-349.
  • Paul Saikat, and Roychoudhury Aryadeep. (2017) Seed priming with spermine and spermidine regulates the expression of diverse groups of abiotic stressresponsive genes during salinity stress in the seedlings of indica rice varieties. Plant Gene, 11, 124-132.
  • Peng J., Li Z., Wen X., Li W., Shi H., Yang L., Zhu H., and Guo H. (2014) Salt-induced stabilization of EIN3/EIL1 confers salinity tolerance by deterring Salt Stress Induced Plant Physio-biochemical and Molecular Responses... ROS accumulation in Arabidopsis. PLoS Genet., 10, e1004664.
  • Penna S. (2003) Building stress tolerance through overproducing trehalose in transgenic plants. Trends Plant Sci., 8, 355-357.
  • Pospisil P., Prasad A., and Rac M. (2019) Mechanism of the Formation of Electronically Excited Species by Oxidative Metabolic Processes: Role of Reactive Oxygen Species. Biomolecules, 9, 258.
  • Pottosin I., and Shabala S. (2014) Polyamines control of cation transport across plant membranes: implications for ion homeostasis and abiotic stress signaling. Front Plant Sci, 5, 154.
  • Qin T., Zhao H., Cui P., Albesher N., and Xiong L. (2017) A Nucleus-Localized Long Non-Coding RNA Enhances Drought and Salt Stress Tolerance. Plant Physiol., 175, 1321-1336.
Еще
Статья научная