Salt stress responses on protein profile in Vigna unguiculata L

Автор: Johnson M, Dooslin Mary D, Babu A

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 4 т.7, 2011 года.

Бесплатный доступ

The present study was aimed to elucidate the salt tolerant, salt inducible and salt sensitive protein of the Vigna unguiculataby Sodium Deodyl Sulphate - Poly Acrylamide Gel Electrophoresis. of Vigna unguiculataexposed to different environmental conditions exhibited a plethora of physio-chemical responses. The seedlings treated with various concentrations of Naat third day showed maximum of 85 bands, with nine active regions and their MW-Rf values ranged from 0.012 to 0.891. The seedlings treated with same experimental set up at fifth day showed maximum number of 63 bands with eight active regions and their MW-Rf values ranged from 0.108 to 0.891. On 5thday seedlings showed the isoperoxidase expression with various sizes of bands. The soluble protein showed a gradual increase during the initial stage and after fifth day there was gradual decrease in their content.

Еще

Salt stress, protein, sds- page, isoperoxidase, proline

Короткий адрес: https://sciup.org/14323555

IDR: 14323555

Список литературы Salt stress responses on protein profile in Vigna unguiculata L

  • Anbalagan, K. (1999). An introduction to electrophoresis, Electrophoresis Institute Yercaud, Tamil Nadu, India. pp 105.
  • Bates, L.S., Waldren, R.P. and Tear, L.D. (1973). Rapid determination of free proline for water-stress studies. Plant Soil, 39,205-207.
  • Fujita, M., Fujita, Y., Noutoshi, Y., Takahashi, F., Narusaka, Y., Yamaguchi-Shinozaki, and Shinozaki, K. (2006). Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Current Opinion in Plant Biology, 9 (4), 436-442.
  • Hegde, B. A. and Joshi, G. V. (1974). Pattern of photosynthesis in a saline indica var. of rice Kalarata. The Proceedings of the symposium on use of radiations and radioisotopes in studies on plant productivity, Pantnagar, 755 -763.
  • Johnson, H.E. Broadhurst, D. Goodacre, R. and Smith, A. R. (2003). Metabolic fingerprinting of salt-stressed tomatoes. Phytochemistry, 62, 919-928.
  • Kim, J.K., Bamba, T., Harada, K., Fukusaki, E. and Kobayashi, A. (2007). Time-course metabolic profiling in Arabidopsis thaliana cell cultures after salt stress treatment. J Exp. Bot., 58, 415-424.
  • Kaplan, F., Kopka, J., Haskell, D.W., Zhao, W., Schiller, K.C., Gatzke, N., Sung, D.Y. and Guy, C.L. (2004). Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol., 136, 4159-4168.
  • Keurentjes, J.J.B., Fu, J.Y., De Vos, C.H.R., Lommen, A., Hall, R.D., Bino, R.J., Van der Plas L.H.W., Jansen, R.C., Vreugdenhil, D. and Koornneef, M. (2006). The genetics of plant metabolism. Nat. Genet., 38, 842-849.
  • Liu, J. X., Srivastava, R., Che, P. and Howell, S. H. (2007). An Endoplasmic Reticulum Stress Response in Arabidopsis is Mediated by Proteolytic Processing and Nuclear Relocation of a Membrane-Associated Transcription Factor, bZIP28. The Plant Cell, 19, 4111-4119.
  • Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randal R. J. (1951). Protein measurement with folin phenol reagent. J. Biol. Chem., 193, 265 -275.
  • Nanjo, T., Fujita, M., Seki, M., Kato, T., Tabata, S. and Shinozaki,. (2003). Toxicity of free proline revealed in an Arabidopsis T-DNA-tagged mutant deficient in proline dehydrogenase. Plant and Cell Physiology, 44, 541-548.
  • Roessner, U., Luedemann, A.,Brust, D., Fiehn, O., Linke, T., Willmitzer, L. and Fernie, A. R. (2001). Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell, 13, 11-29.
  • Routley, D.G. (1966). Proline Accumulation in Wilted Ladino Clover Leaves. Crop Sci., 6, 358-361.
  • Sadasivam, S. and Manickam, A. (1992). Biochemical methods for Agricultural Science. Wiley Eastern Ltd. and Tamil Nadu Agricultural University, Coimbatore, India.
  • Seki, M., Kamei, A., Yamaguchi-Shinozaki, K. and Shinozaki, K. (2003). Molecular responses to drought, salinity and frost: common and different paths for plant protection. Current Opinion in Biotechnology, 14 (2), 194-199.
  • Shao H.B., Chu L.Y., Lu Z.H., Kang C.M. (2008). Primary oxidant scavenging and redox signaling in higher plants. Int J Biol Sci.; 4, 8-14
  • Smila, K.H., Johnson, M. and Rajasekarapandian, M. (2007). Studies on varietal difference, tissue specificity and developmental variation of esterase and peroxidase isozymes in pearl millet [Pennisetum glaucum (L.) R. Br.]. Indian Journal of Biotechnology, 6, 91-99.
  • Siddiqui Z., Khan M.A., Kim B.G., Huang, J.S. and Kwon, T.R. (2008). Physiological responses of Brassica napus genotypes to combined drought and salt stress. Plant Stress, 2 (1), 78-83.
  • Singh, N.K., Handa, A.K., Hasegaura, P.M. and Bressan, R.A. (1985). Proteins associated with adaptation of cultured tobacco cells to NaCl. Plant Physiology, 79, 126-37.
  • Weckwerth, W., Wenzel, K. and Fiehn, O. (2004). Process for the integrated extraction, identification and quantification of metabolites, proteins and RNA to reveal their co-regulation in biochemical networks. Proteomics, 4, 78-83
  • Yamaguchi, T. and Blumwald, E. (2005). Developing salt-tolerant crop plants: challengesand opportunities. Trends in Plant Science, 10, 615-620.
  • Yamaguchi-Shinozaki, K. and Shinozaki, K. (2006). Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stress. Annual Review of Plant Biology, 57, 781-803.
  • Yancey, P. H., Clark, M. E., Hand, S. C., Bowlus, R. D. and Somero, G. N. (1982). Living with water stress: evolution of osmolyte systems. Science, 217, 1214-1222.
  • Zhu, J. K. (2002). Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 53, 247-273.
Еще
Статья научная