СБОР ГЕНЕТИЧЕСКИХ БИОМАТЕРИАЛОВ (ДНК) С ПОВЕРХНОСТЕЙ: МЕТОДЫ И УСТРОЙСТВА

Автор: Д. Г. Петров, Е. Д. Макарова, И. Е. Антифеев, М. В. Зайцева

Журнал: Научное приборостроение @nauchnoe-priborostroenie

Рубрика: Приборостроение физико-химической биологии

Статья в выпуске: 1, 2024 года.

Бесплатный доступ

В обзоре рассмотрены современные технологии и тенденции развития в разработке приборов для взятия проб, в том числе контактной ДНК с различных поверхностей и предметов. В статье рассматривается эффективность сенсорных методов восстановления ДНК и устройств, используемых для сбора ДНК с различных поверхностей на месте преступления для судебно-медицинской лаборатории, а также рассмотрены проблемы, ограничения методов и современные тенденции развития. Разобраны распространенные и новые методы сбора проб, а именно: соскабливание, вырезание, тампоны (и протирание тампонами), подтяжка лентой и гелем, замачивание, Bardole M-vac, сухой и влажный вакуум и другие.

Еще

ДНК-судебная экспертиза, контактная ДНК, методы извлечения ДНК, сбор биоматериалов с поверхности, тампоны, протирание тампонами, лифтинг клейкой лентой, лифтинг гелями, мокрое вакуумирование, сухое вакуумирование, метод погружения

Короткий адрес: https://sciup.org/142240145

IDR: 142240145

Список литературы СБОР ГЕНЕТИЧЕСКИХ БИОМАТЕРИАЛОВ (ДНК) С ПОВЕРХНОСТЕЙ: МЕТОДЫ И УСТРОЙСТВА

  • 1. van Oorschot R.A.H., Ballantyne K.N., Mitchell R.J. Forensic trace DNA: a review // Investigative Genetics. 2010. Vol. 1. Id. 14. DOI: 10.1186/2041-2223-1-14
  • 2. Анисимов В.А., Гарафутдинов Р.Р., Сагитов А.М. и др. ДНК-криминалистика – зарождение, современность и перспективы // Биомика. 2019. Т. 11, № 3. С. 282–314. DOI: 10.31301/2221-6197.bmcs.2019-26
  • 3. Фалеева Т.Г. Молекулярно-генетическая идентификация потожировых следов в отпечатках пальцев на коже человека. Дис. … канд. мед. наук. Санкт-Петербург, 2021. 208 с.
  • 4. Yang J., Brooks C., Estes M.D. et al. An integratable microfluidic cartridge for forensic swab samples lysis // Forensic Sci. Int.: Genetics. 2014. Vol. 8. P. 147–158. DOI: 10.1016/j.fsigen.2013.08.012
  • 5. Bruijns B., Knotter J., Tiggelaar R. A Systematic review on commercially available integrated systems for forensic DNA analysis // Sensors. 2023. Vol. 23: Id. 1075. DOI: 10.3390/s23031075
  • 6. Jung W., Yang M., Barrett M. et al. Recent improvement in miniaturization and integration of a DNA analysis system for rapid forensic analysis (midas) // J. Forensic Investigation. 2014. Vol. 2, no. 2. DOI: 10.13188/2330-0396.1000012
  • 7. Yang J., Hurth C., Nordquist A. et al. Integrated microfluidic system for rapid DNA fingerprint analysis: a miniaturized integrated DNA analysis system (MiDAS) – swab sample-in to DNA profile-out // Microfluidic Electrophoresis: Methods and Protocols, Methods in Molecular Biology / Dutta D. (ed.). Gumana Press, 2019. P. 207–224. DOI: 10.1007/978-1-4939-8964-5_14
  • 8. Butler J.M. Recent advances in forensic DNA typing: INTERPOL review 2019–2022 // Forensic Sci. Int.: Synergy. 2023. Vol. 6. Id. 100311. DOI: 10.1016/j.fsisyn.2022.100311
  • 9. Bazyar H. On the application of microfluidic-based technologies in forensics: a review // Sensors. 2023. Vol. 23. Id. 5856. DOI: 10.3390/s23135856
  • 10. Земскова Е.Ю., Соколова Н.Р., Исупов С.В., Иванов П.Л. "Быстрая ДНК" — перспективы судебно-экспертного исследования ДНК с использованием генетических анализаторов полного цикла // Судебная медицина. 2021. Т. 7, № 4. С. 29–38. DOI: 10.17816/fm678
  • 11. Butler J.M. The future of forensic DNA analyses // Phil. Trans. R. Soc. B. 2015. Vol. 370. Id. 20140252. DOI: 10.1098/rstb.2014.0252
  • 12. Burrill J., Daniel B., Frascione N. A review of trace "touch DNA" deposits: variability factors and an exploration of cellular composition // Forensic Sci. Int.: Genetics. 2019. Vol. 39. P. 8–18. DOI: 10.1016/j.fsigen.2018.11.019
  • 13. Alessandrini F., Cecati M., Pesaresi M. et al. Fingerprints as evidence for a genetic profile: morphological study on fingerprints and analysis of exogenous and individual factors affecting DNA typing // J. Forensic Sci. 2003. Vol. 48, no. 3. P. 586–592. DOI: 10.1520/JFS2002260
  • 14. Tang J., Ostrander J., Wickenheiser R., Hall A. Touch DNA in forensic science: The use of laboratory-created eccrine fingerprints to quantify DNA loss // Forensic Sci. Int.: Synergy. 2020. Vol. 2. P. 1–16. DOI: 10.1016/j.fsisyn.2019.10.004
  • 15. Kumar P., Bhandari D., Chauhan J.S., Sahajpal V. Touch DNA: revolutionizing evidentiary DNA forensics // Int. J. Forensic Sci. 2023. Vol. 8, no. 3. Id. 000314. DOI: 10.23880/ijfsc-16000314
  • 16. Kanokwongnuwut P., Martina B., Taylora D. et al. How many cells are required for successful DNA profiling? // Forensic Sci. Int.: Genet. 2020. DOI: 10.1016/j.fsigen.2020.102453 [Author manuscript].
  • 17. Gołaszewska A. Recovery techniques for contact DNA traces // Arch. Med. Sadowej. Kryminol. 2022. Vol. 72, no. 3. P. 138–146. DOI: 10.4467/16891716AMSIK.22.016.17394
  • 18. van Oorschot R.A.H., Szkuta B., Meakin G.E. et al. DNA transfer in forensic science: a review // Forensic Sci. Int.: Genetics. 2019. Vol. 38. P. 140–166. DOI: 10.1016/j.fsigen.2018.10.014
  • 19. Williamson A.L. Touch DNA: Forensic Collection and Application to Investigations // J. Assoc. Crime Scene Reconstr. 2012. Vol. 18, no. 1. P. 1–5.
  • 20. Hebda L.M., Doran A.E., Foran D.R. Collecting and Analyzing DNA Evidence from Fingernails: A Comparative Study // J. Forensic Sci. 2014. Vol. 59, iss. 5. P. 1343–1350. DOI: 10.1111/1556-4029.12465
  • 21. Singh H.N. Collection, preservation and transportation of biological evidence for forensic DNA analysis // Int. J. All Research Education and Scientific Methods (IJARESM). 2021. Vol. 9, no. 9. P. 1123–1130.
  • 22. Hess S., Haas C. Recovery of trace DNA on clothing: A comparison of mini-tape lifting and three other forensic evidence collection techniques // J. Forensic Sci. 2017. Vol. 62, iss. 1. P. 187–191. DOI: 10.1111/1556-4029.13246
  • 23. Bécue A., Eldridge H., Champod C. Identification Sciences. Fingermarks // 19th INTERPOL Int. Forensic Sci. Managers Symposium, Lyon, France 7–10 October 2019. Review Papers. 2019. P. 677–770.
  • 24. Collecting DNA evidence at property crime scenes. 2009. https://www.sjsu.edu/people/steven.lee/courses/c2/s2/Coll
  • ecting%20DNA%20Evidence%20at%20Property%20Crime%20Scenes%20Course.pdf
  • 25. Zaghloud N.M., Samir T., Megahed H.M. Recovery of DNA from Fingerprints on Enhanced Different Paper Types // J. Forensic Sci. & Criminol. 2019. Vol. 7, no. 2. URL: https://www.annexpublishers.com/articles/JFSC/7202-Recovery-of-DNA-from-Fingerprints-on-EnhancedDifferent-Paper-Types.pdf
  • 26. Kumar A. Touch DNA; A Quantitative Study in the Perspective of Forensic Science // Austin J. Forensic Sci. Criminol. 2021. Vol. 8, no. 1. DOI: 10.26420/AustinJForensicSciCriminol.2021.1084
  • 27. Al-Snan N.R. The recovery of touch DNA from RDX-C4 evidences // Int. J. Leg. Med. 2021. Vol. 135, no. 2. P. 393–397. DOI: 10.1007/s00414-020-02407-9
  • 28. Solomon A.D., Hytinen M.E., McClain A.M. et al. An Optimized DNA Analysis Workflow for the Sampling, Extraction, and Concentration of DNA obtained from Archived Latent Fingerprints // J. Forensic Sci. 2018. Vol. 63, iss. 1. P. 47–57. DOI: 10.1111/1556-4029.13504
  • 29. Dong H., Wang J., Zhang T. et al. Comparison of preprocessing methods and storage times for touch DNA samples // Croat. Med. J. 2017. Vol. 58, iss. 1. P. 4–13. DOI: 10.3325/cmj.2017.58.4
  • 30. Tozzo P., Mazzobel E., Marcante B. et al. Touch DNA Sampling Methods: Efficacy Evaluation and Systematic Review // Int. J. Mol. Sci. 2022. Vol. 23. Iss. 24. Id. 15541. DOI: 10.3390/ijms232415541
  • 31. Sessa F., Salerno M., Bertozzi G. et al. Touch DNA: impact of handling time on touch deposit and evaluation of different recovery techniques: An experimental study // Sci. Rep. 2019. Vol. 9. Id. 9542. DOI: 10.1038/s41598-019-46051-9
  • 32. Linacre A., Pekarek V., Swaran Y.C., Tobe S.S. Generation of DNA profiles from fabrics without DNA extraction // Forensic Sci. Int. Genet. 2010. Vol. 4. P. 137–141. DOI: 10.1016/j.fsigen.2009.07.006
  • 33. Cavanaugh S.E., Bathrick A.S. Direct PCR amplification of forensic touch and other challenging DNA samples: a review // Forensic Sci. Int. Genet. 2018. Vol. 32. P. 40–49. DOI: 10.1016/j.fsigen.2017.10.005
  • 34. Irion P.R. Evaluating the use of the M-Vac® Wet Vacuum System to recover DNA from cotton fabric // Graduated Theses, Dissertation, and Problem Reports. 2020. 7951 URL: https://researchrepository.wvu.edu/etd/7951/
  • 35. Bonsu D.O.M., Higgins D., Austin J.J. Forensic touch DNA recovery from metal surfaces – A review // Science & Justice. 2020. Vol. 60. P. 206–215. DOI: 10.1016/j.scijus.2020.01.002
  • 36. Bruijns B.B., Tiggelaar R.M., Gardeniers H. The Extraction and Recovery Efficiency of Pure DNA for Different Types of Swabs // J. Forensic Sci. 2018. Vol. 63, no. 5. P. 1492–1499. DOI: 10.1111/1556-4029.13837
  • 37. Vashist V., Banthia N., Kumar S., Agrawal P. A systematic review on materials, design, and manufacturing of swabs // Annals of 3D Printed Medicine. 2023. Vol. 9. Id. 100092. DOI: 10.1016/j.stlm.2022.100092
  • 38. Приспособления для сбора образцов в криминалистике. Life Technology Corporation. 2012. URL: www.lifetech.com/
  • 39. Сбор и хранение образцов для идентификации человека. Copan 2021. URL: www.copangroup.com
  • 40. Comment D., Gouy A., Zingg C., Zieger M. A holistic approach for the selection of forensic DNA Swabs // Forensic Sci. Int. 2023. Vol. 348. Id. 111737. DOI: 10.1016/j.forsciint.2023.111737
  • 41. Adamowicz M.S., Stasulli D.M., Sobestanovich E.M., Bille T.W. Evaluation of methods to improve the extraction and recovery of DNA from cotton swabs for forensic analysis // PLoS One. 2014. Vol. 9. Id. e116351. DOI: 10.1371/journal.pone.0116351
  • 42. van Oorschot R.A.H., Phelan D.G., Futlong S. et al. Are you collecting all the available DNA from touched objects? // Int. Congress Series, 2003. Vol. 1239. P. 803–807. DOI: 10.1016/S0531-5131(02)00498-3
  • 43. Alketbi S.K., Goodwin W. Validating Touch DNA Collection Techniques Using Cotton Swabs // J Forensic Res. 2019. Vol. 10, iss. 3. P. 1–3. URL: https://www.hilarispublisher.com/open-access/validatingtouch-dna-collection-techniques-using-cotton-swabs.pdf
  • 44. Gray A., Kuffel A., Daeid N.N. An improved rapid method for DNA recovery from cotton swabs // Forensic Sci. Int. Genet. 2023. Vol. 64. Id. 102848. DOI: 10.1016/j.fsigen.2023.102848
  • 45. Marshall P., Stoljarova M., Larue B. et al. Evaluation of a novel material, diomics X-Swab, for collection of DNA // 3rd Int. Conf. on Forensic Res. Technol., October 06–08 2014. Hilton San Antonio Airport, USA (abstract).
  • 46. Novroski N., Kindt T., Schmedes S. et al. Diomics XSwab™: a novel bio-specimen collection tool for increased trace material recovery and PCR enhancement // Poster Presentation. 25th Annual Int. Symposium on Human Identification (Promega); Phoenix, Arizona, September 29-October 2, 2014.
  • 47. Luna 2017. Luna's dissolvable swabs can revolutionize crime Scene investigations // BLOG. URL: https://lunainc.com/blog/lunas-dissolvable-swabs-canrevolutionize-crime-scene-investigations
  • 48. Dissolvable forensic swabs. URL: https://lunalabs.us/product/dissolvable-forensic-swabs/
  • 49. Popule®self-saturating applicators. Puritan Medical Products Co. 2019. URL: https://www.puritanmedproducts.com/
  • 50. Garvin A.M., Holzinger R., Berner F. et al. The forensiX Evidence Collection Tube and Its Impact on DNA Preservation and Recovery // BioMed Res. Int. 2013. Vol. 2013. Id. 105797. DOI: 10.1155/2013/105797
  • 51. Mawlood S.K., Alrowaithi M., Watson N. Advantage of ForensiX Swabs in Retrieving and Preserving Biological Fluids // J Forensic Sci. 2015. Vol. 60, iss. 3. P. 686–689. DOI: 10.1111/1556-4029.12704
  • 52. Sauvagère S., Pussiau A., Hubac S. Innovations in Forensic Sciences for Human Identification by DNA in the French Gendarmerie during the Last 10 Years // Forensic Sci. 2023. Vol. 3. P. 316–329. DOI: 10.3390/forensicsci3020024
  • 53. Copan microFLOQ™ direct. URL: https://pubmed.ncbi.nlm.nih.gov/31165261/
  • 54. Ambers A., Wiley R., Novroski N., Budowle B. Direct PCR amplification of DNA from human bloodstains, saliva, and touch samples collected with microFLOQ®swabs // Forensic Sci. Int. Genet. 2018. Vol. 32. P. 80–87. DOI: 10.1016/j.fsigen.2017.10.010
  • 55. Gammon K., Murray-Jones K., Shenton D. et al. Touch DNA on objects can be analysed at low cost using simplified direct amplification methods // bioRxiv preprint. February 08, 2019. DOI: 10.1101/540823
  • 56. DNA Extraction Pen to serve as A Forensic Tool. URL: http://imageandstyle.com/dna-extraction-pen-serveforensic-tool/
  • 57. Comte J., Baechler S., Gervaix J. et al. Touch DNA collection – Performance of four different swabs // Forensic Sci. Int. Genet. 2019. Vol. 43. Id. 102113. DOI: 10.1016/j.fsigen.2019.06.014
  • 58. Seiberle I., Währer J., Kron S. et al. Collaborative swab performance comparison and the impact of sampling solution volumes on DNA recovery // Forensic Sci. Int. Genet. 2022. Vol. 59. Id. 102716. DOI: 10.1016/j.fsigen.2022.102716
  • 59. Hartless S., Walton-Williams L., Williams G. Critical Evaluation of Touch DNA Recovery Methods for Forensic Purposes // Forensic Sci. Int. Genetics. Suppl. Ser. 2019. DOI: 10.1016/j.fsigss.2019.10.020
  • 60. Smith C., Cox J.O., Rhodes C. et al. Comparison of DNA typing success in compromised blood and touch samples based on sampling swab composition // J. Forensic Sci. 2021. Vol. 66, iss. 4. P. 1427–1434. DOI: 10.1111/1556-4029.14694
  • 61. Pang B.C.M., Cheung B.K.K. Double swab technique for collecting touched evidence // Legal Med. 2007. Vol. 9. P. 181–184. DOI: 10.1016/j.legalmed.2006.12.003
  • 62. Hoffmann S.G., Stallworth S.E., Foran D.R. Investigative studies into the recovery of DNA from improvised explosive device containers // J Forensic Sci. 2012. Vol. 57, no. 3. P. 602–609. DOI: 10.1111/j.1556-4029.2011.01982.x
  • 63. Thomasma S.M., Foran D.R. The influence of swabbing solutions on DNA recovery from touch samples // J. Forensic Sci. 2013. Vol. 58, no. 2. P. 465–469. DOI: 10.1111/1556-4029.12036
  • 64. Phetpeng S., Kitpipit T., Asavutmangkul V. et al. Touch DNA collection from improvised explosive devices: A comprehensive study of swabs and moistening agents // Forensic Sci. Int. Genet. Suppl. Ser. 2013. Vol. 4. P. e29–e30. DOI: 10.1016/j.fsigss.2013.10.014
  • 65. Schulte J., Rittiner N., Seiberle I., Kron S. Collecting touch DNA from glass surfaces using different sampling solutions and volumes: Immediate and storage effects on genetic STR analysis // J. Forensic Sci. 2023. Vol. 68, iss. 4. P. 1133–1147. DOI: 10.1111/1556-4029.15305
  • 66. Butler J.M. Advanced topics in forensic DNA typing: Methodology. Academic Press, 2011. 704 p.
  • 67. Romeika J.M., Yan F. Recent advances in forensic DNA analysis // J. Forensic Res. 2013. S12: 001. DOI: 10.4172/2157-7145.S12-001
  • 68. Hedman J., Jansson L., Akel Y. et al. The double-swab technique versus single swabs for human DNA recovery from various surfaces // Forensic Sci. Int. Genet. 2020. Vol. 46. Id. 102253. DOI: 10.1016/j.fsigen.2020.102253
  • 69. Parsons L., Sharfe G., Vintiner S. DNA Analysis and Document Examination: The Impact of Each Technique on Respective Analyses // J. Forensic Sci. 2016. Vol. 61, no. 1. P. 26–34. DOI: 10.1111/1556-4029.12848
  • 70. Williams G., Pandre M., Ahmed W. et al. Evaluation of low trace DNA recovery techniques from ridged surfaces // J. Forensic Res. 2013. Vol. 4, iss. 4. DOI: 10.4172/2157-7145.1000199
  • 71. Abdullah A., Szkuta B., Meakin G.E. Effect of swabbing technique and duration on forensic DNA recovery // Sci. Justice. 2023. Vol. 63, no. 3. P. 343–348. DOI: 10.1016/j.scijus.2023.03.002
  • 72. Hedman J., Akel Y., Jansson L. et al. Enhanced forensic DNA recovery with appropriate swabs and optimized swabbing technique // Forensic Sci. Int. Genet. 2021. Vol. 53. Id. 102491. DOI: 10.1016/j.fsigen.2021.102491
  • 73. Jansson L., Akel Y., Eriksson R. et al. Impact of swab material on microbial surface sampling // J. Microbiol. Methods. 2020. Vol. 176. Id. 106006. DOI: 10.1016/j.mimet.2020.106006
  • 74. Digel I., Akimbekov N., Kistaubayeva A., Zhubanova A. Microbial sampling from dry surfaces: current challenges and solutions // Biological, Physical and Technical Basics of Cell Engineering /G.M. Artmann et al. (eds.). Springer Nature Singapore Pte Ltd., 2018. P. 421–456. DOI: 10.1007/978-981-10-7904-7_19
  • 75. Wood I., Park S., Tooke J. et al. Efficiencies of recovery and extraction of trace DNA from non-porous surfaces // Forensic Sci. Int. Genetics. Suppl. Ser. 2017. Vol. 6. P. e153–e156 (Preview). DOI: 10.1016/j.fsigss.2017.09.022
  • 76. Bini C., Giorgetti A., Giovannini E. Human DNA contamination of postmortem examination facilities: Impact of COVID-19 cleaning procedure // J Forensic Sci. 2022. Vol. 67. P. 1867–1875. DOI: 10.1111/1556-4029.15096
  • 77. Mwangi P., Mogotsi M., Ogunbayo A. et al. A decontamination strategy for resolving SARS-CoV-2 amplicon contamination in a next-generation sequencing laboratory // Archives of Virology. 2022. Vol. 167. P. 1175–1179. DOI: 10.1007/s00705-022-05411-z
  • 78. Nilsson M., De Maeyer H., Allen M. Evaluation of Different Cleaning Strategies for Removal of Contaminating DNA Molecules // Genes. 2022. Vol. 13, no. 1. Id. 162. DOI: 10.3390/genes13010162
  • 79. Pochtovyi A.A., Bacalin V.V., Kuznetsova N.Z. et al. SARS-CoV-2 Aerosol and Surface Contamination in Health Care Settings: The Moscow Pilot Study // Aerosol and Air Quality Research. 2021. Vol. 21, no. 4. Id. 200604. DOI: 10.4209/aaqr.200604
  • 80. Ichijo T., Hieda H., Ishihara R. et al. Bacterial Monitoring with Adhesive Sheet in the International Space Station – "Kibo", the Japanese Experiment Module // Microbes Environ. 2013. Vol. 28, no. 2. P. 264–268. DOI: 10.1264/jsme2.ME12184
  • 81. Yamaguchi N., Roberts M., Castro S. et al. Microbial Monitoring of Crewed Habitats in Space — Current Status and Future Perspectives // Microbes Environ. 2014. Vol. 29, no. 3. P. 250–260. DOI: 10.1264/jsme2.ME14031
  • 82. Forsberg C., Jansson L., Ansell R., Hedman J. Highthroughput DNA extraction of forensic adhesive tapes // Forensic Sci. Int. Genet. 2016. Vol. 24. P. 158–163. DOI: 10.1016/j.fsigen.2016.06.004
  • 83. Forsberg C., Wallmark N., Hedell R. et al. Reference material for comparison of different adhesive tapes for forensic DNA sampling // Forensic Sci. Int. Genet. Suppl. Ser. 2015. Vol. 5. P. e454–e455. DOI: 10.1016/j.fsigss.2015.09.180
  • 84. Li R.C., Harris H.A. Using hydrophilic adhesive tape for collection of evidence for forensic DNA analysis // J. Forensic Sci. 2003. Vol. 48, no. 6. P. 1318–1321. DOI: 10.1520/JFS2003121
  • 85. Verdon T.J., Mitchell R.J., van Oorschot R.A.H. Evaluation of tapelifting as a collection method for touch DNA // Forensic Sci. Int. Genet. 2014. Vol. 8, no. 1. P. 179–186. DOI: 10.1016/j.fsigen.2013.09.005
  • 86. Zech W-D., Malik N., Thali M. Applicability of DNA Analysis on Adhesive Tape in Forensic Casework // J Forensic Sci. 2012. Vol. 57, no. 4. P. 1036–1041. DOI: 10.1111/j.1556-4029.2012.02105.x
  • 87. Hymus C.M., Baxter F.O., Ta H. et al. A comparison of six adhesive tapes as tape lifts for efficient trace DNA recovery without the transfer of PCR inhibitors // Leg. Med. 2023. Id. 102330. DOI: 10.1016/j.legalmed.2023.102330
  • 88. Gunnarsson J., Eriksson H., Ansell R. Success Rate of Forensic Tape-Lift Method for DNA Recovery // Problems of Forensic Sci. 2010. Vol. LXXXIII. P. 243–254.
  • 89. Joël J., Glanzmann B., Germann U., Cossu C. DNA extraction of forensic adhesive tapes – A comparison of two different methods // Forensic Sci. Int. 2015. Vol. 5. P. e579–e581. DOI: 10.1016/j.fsigss.2015.09.229
  • 90. Burmuzoska I., Hogg K., Raymond J. et al. Comparison of operational DNA recovery methods: Swabs versus tapelifts // Forensic Sci. Int. Genet. Suppl. Ser. 2022. Vol. 8. P. 50–52. DOI: 10.1016/j.fsigss.2022.09.019
  • 91. Холевчук А.Г. Способы получения ДНК высокого качества с непористой поверхности после визуализации следов пальцев рук: опыт США // Вестник Нижегородского университета им. Н.И. Лобачевского. 2020. № 4. С. 159–167.
  • 92. Bhoelai B., Beemster F., Sijen T. Revision of the tape used in a tape-lift protocol for DNA recovery // Forensic Sci. Int. Genet. Suppl. Ser. 2013. Vol. 4. P. e270–e271. DOI: 10.1016/j.fsigss.2013.10.138
  • 93. Liu J.Y. PE-swab direct STR amplification of forensic touch DNA samples // J. Forensic Sci. 2015. Vol. 60, no. 3. P. 693–701. DOI: 10.1111/1556-4029.12705
  • 94. Liu J.Y. Direct qPCR quantification using the Quantifiler® Trio DNA quantification kit // Forensic Sci. Int. Genetics. 2014. Vol. 13. P. 10–19. DOI: 10.1016/j.fsigen.2014.06.016
  • 95. Janssen K., Aune M., Olsen M. et al. Biological stain collection – Absorbing paper is superior to cotton swabs // Forensic Sci. Int. Genet. Suppl. Ser. 2019. Vol. 7, iss. 1. P. 468–469. DOI: 10.1016/j.fsigss.2019.10.054
  • 96. van Oorschot R.A.H., Meakin G.E., Kokshoorn B. et al. DNA Transfer in Forensic Science: Recent Progress towards Meeting Challenges // Genes. 2021. Vol. 12. Id. 1766. DOI: 10.3390/genes12111766
  • 97. Pizzamiglio M., Mameli A., My D., Garofano L. Forensic identification of a murderer by LCN DNA collected from the inside of the victim's car // Int. Congr. Ser. 2004. Vol. 1261. P. 437–439. DOI: 10.1016/S0531-5131(03)01855-7
  • 98. Kirgiz I.A., Calloway C. Increased recovery of touch DNA evidence using FTA paper compared to conventional collection methods // J. Forensic Legal Med. 2017. Vol. 47. P. 9–15. DOI: 10.1016/j.jflm.2017.01.007
  • 99. Omni-Matrix sample collection system. URL: http://www.biofunctions.com/biofunctions/category.asp?c=202
  • 100. Ramirez E. Evaluation of a novel DNA collection matrix designed to improve recovery of touch DNA from nonporous surfaces. Student These CUNY John Jay College of Criminal Justice, December 2019. URL: https://academicworks.cuny.edu/jj_etds/133
  • 101. BVDA international: Materials and equipment for crime scene officers and forensic laboratories. URL: www.bvda.com
  • 102. FOMA, product description. Gelatin lifters for criminal investigations. 2021. URL: www.foma.eu
  • 103. Parsons R., Bates L., Walton-Williams L., et al. DNA from Fingerprints: Attempting dual recovery. Department of Forensic and Crime Sciences, Staffordshire University, 2016. P. 8–17. URL: http://eprints.staffs.ac.uk/2764/3/eprints2764.pdf
  • 104. Curtis B. The use of forensic gellifters to collect human DNA off trafficked animal specimens. URL: https://experimentuploads.s3.amazonaws.com/fileattachments/user/162647/hNOwG4LtQOamQrl7dqaj_The%20Use%20of%20Forensic%20Gellifters%20to%20Collect%20Human%20DNA%20Off%20Trafficked%20Animal%20Specimens-%20Experiment.com.pdf
  • 105. Zieger M., Schneider C., Utz S. DNA recovery from gelatin fingerprint lifters by direct proteolytic digestion // Forensic Sci. Int. 2019. Vol. 295. P. 145–149. DOI: 10.1016/j.forsciint.2018.12.006
  • 106. Kwok R., Parsons R., Fieldhouse S., Walton-Williams L. An evaluation of two adhesive media for the recovery of DNA from latent fingermarks: A preliminary study // Forensic Sci. Int. 2023. Vol. 344. Id. 11574. DOI: 10.1016/j.forsciint.2023.111574
  • 107. van Helmond W., O'Brien V., de Jong R. et al. Collection of amino acids and DNA from fingerprints using hydrogels // Analyst. 2018. Vol. 143, no. 4. P. 900–905. DOI: 10.1039/C7AN01692A
  • 108. Dieltjes P., Mieremet R., Zuniga S. et al. A sensitive method to extract DNA from biological traces present on ammunition for the purpose of genetic profiling // Int. J. Legal Med. 2011. Vol. 125. P. 597–602. DOI: 10.1007/s00414-010-0454-4
  • 109. Montpetit S., O’Donnell P. An optimized procedure for obtaining DNA from fired and unfired ammunition // Forensic Sci. Int. Genetics. 2015. Vol. 14. P. 70–74. DOI: 10.1016/j.fsigen.2015.03.012
  • 110. Subhani Z., Coleman K., Moore D. et al. A novel semiautomated direct lysis method for DNA recovery from live and spent 9mm ammunition // Forensic Sci. Int. Genet. Suppl. Ser. 2019. Vol. 7, iss. 1. P. 269–270. DOI: 10.1016/j.fsigss.2019.09.120
  • 111. Prasad E., Barash M., Hitchcock C. et al. Evaluation of soaking to recover trace DNA from fired cartridge cases // Aust. J. Forensic Sci. 2020. Vol. 53, no. 5. Id. 1757758. DOI: 10.1080/00450618.2020.1757758
  • 112. Bille T.W., Fahrig G., Weitz S.M., Peiffer G.A. An improved process for the collection and DNA analysis of fired cartridge cases // Forensic Sci. Int. Genetics 2020. Vol. 46. Id. 102238. DOI: 10.1016/j.fsigen.2020.102238
  • 113. Elwick K., Gauthier Q., Rink S. et al. Recovery of DNA from fired and unfired cartridge casing: comparison of two DNA collection methods // Forensic Sci. Int. Genet. 2022. Vol. 59. Id. 102726. DOI: 10.1016/j.fsigen.2022.102726
  • 114. Milne B. New wet vacuum touch DNA recovery system. CSEye (The Chartered Society of Forensic Sciences), January 2016. 36 p. URL: https://www.mvac.com/images/pdfs/cseyejanuary2016.pdf
  • 115. Garrett A.D., Patlak D.J., Gunn L.E. et al. Exploring the Potential of a Wet-Vacuum Collection System for DNA Recovery // J. Forensic Identification. 2014. Vol. 64, no. 5. P. 429–448.
  • 116. Hedman J., Agren J., Ansell R. Crime scene DNA sampling by wet-vacuum applying M-Vac // Forensic Sci. Int. Genet. Suppl. Ser. 2015. Vol. 5. P. e89–e90. DOI: 10.1016/j.fsigss.2015.09.036
  • 117. McLamb J.M., Adams L.D., Kavlick M.F. Comparison oft he M-Vac® Wet-Vacuum-Based Collection Method for DNA Recovery on Diluted Bloodstained Substrates // J. Forensic Sci. 2020. Vol. 65, no. 6. P. 1828–1834. DOI: 10.1111/1556-4029.14508
  • 118. Vickar T., Bache K., Daniel B., Frascione N. The use of the M-Vac® wet-vacuum system as a method for DNA recovery // Sci. Justice. 2018. Vol. 58, no. 4. P. 282–286. DOI: 10.1016/j.scijus.2018.01.003
  • 119. Williams S., Panacek E., Green W. et al. Recovery of salivary DNA from the skin after showering // Forensic Sci. Med. Pathol. 2015. Vol. 11, no. 1. P. 29–34. DOI: 10.1007/s12024-014-9635-7
  • 120. Bardole DNA collection method. M-Vac® Systems, Inc. URL: https://www.m-vac.com/whymvac/research/bardole-dna-collection-method
  • 121. McLaughlin P., Hopkins C., Springer E., Prinz M. Nondestructive DNA recovery from handwritten documents using a dry vacuum technique // J. Forensic Sci. 2021. Vol. 66, no. 4. P. 1443–1451. DOI: 10.1111/1556-4029.14696
  • 122. Morgan A.G., Prinz M. Development of Improved DNA Collection and Extraction Methods for Handled Documents // Genes. 2023. Vol. 14, no. 3. Id. 761. DOI: 10.3390/genes14030761
  • 123. Währen J., Kehm S., Allen M. et al. The DNA-Buster: The evaluation of an alternative DNA recovery approach // Forensic Sci. Int. Genet. 2023. Vol. 64. Id. 102830. DOI: 10.1016/j.fsigen.2023.102830
  • 124. Neves C., Zieger M. "Total Human DNA Sampling" – Forensic DNA profiles from large areas // Forensic Sci. Int. Genetics 2023. Vol. 67. Id. 102939. DOI: 10.1016/j.fsigen.2023.102939
  • 125. Caraballo N.I., Mendel J., Holness H. et al. An investigation into the concurrent collection of human scent and epithelial skin cells using a non-contact sampling device // Forensic Sci. Int. 2016. Vol. 266. P. 148–159. DOI: 10.1016/j.forsciint.2016.05.019
  • 126. Plaza D.T., Mealy J.L., Lane J.N. et al. ESDA®-Lite collection of DNA from latent fingerprints on documents // Forensic Sci, Int. Genet. 2015. Vol 16. P. 8–12. DOI: 10.1016/j.fsigen.2014.11.011
  • 127. Zieger M., Defaux P.M., Utz S. Electrostatic sampling of trace DNA from clothing // Int. J. Legal. Med. 2016. Vol. 130, no. 3. P. 661–667. DOI: 10.1007/s00414-015-1312-1
  • 128. Meakin G., Jamieson A. DNA transfer: Review and implications for casework // Forensic Sci. Int. Genet. 2013. Vol. 7, no. 4. P. 434–443. DOI: 10.1016/j.fsigen.2013.03.013
  • 129. Kanokwongnuwut P., Kikbride P., Linacre A. Detection of latent DNA // Forensic Sci. Int. Genetics. 2018. Vol. 37. P. 95–101. DOI: 10.1016/j.fsigen.2018.08.004
  • 130. Champion J., Kanokwongnuwut P., van Oorschot R.A.H. et al. Evaluation of a fluorescent dye to visualize touch DNA on various substrates // J. Forensic Sci. 2021. Vol. 66, no. 4. P. 1435–1442. DOI: 10.1111/1556-4029.14695
  • 131. Kanokwongnuwut P., Kirkbride P., Linacre A. Visualising latent DNA on swabs // Forensic Sci. Int. 2018. Vol. 291. P. 115–123. DOI: 10.1016/j.forsciint.2018.08.016
  • 132. Linacre A. Latent DNA: "seeing" the location of DNA // Judicial Officers' Bulletin 2019. Vol. 31, no. 3. P. 23–24.
  • 133. Kanokwongnuwut P., Kirkbride K.P., Linacre A. An assessment of tape-lifts // Forensic Sci. Int. Genet. 2020. Vol. 47. Id. 102292. DOI: 10.1016/j.fsigen.2020.102292
  • 134. Krosch M.N., McNevin A., Cook J. et al. Fluorescent dyebased detection of trace DNA on forensic tapelifts from worn shirts // Australian J. Forensic Sci. 2021. Vol. 53, iss. 4. P. 419–430. DOI: 10.1080/00450618.2019.1711177
  • 135. Cook R., Mitchell N., Henry J. Assessment of Diamond™ Nucleic Acid Dye for the identification and targeted sampling of latent DNA in operational casework // Forensic Sci. Int. Genet. 2021. Vol. 55. Id. 102579. DOI: 10.1016/j.fsigen.2021.102579
  • 136. Hughes D.A., Szkuta B., van Oorschot R.A.H., Conlan X.A. "Technical note": Optimisation of Diamond™ Nucleic Acid. Dye preparation, application, and visualization, for latent DNA detection // Forensic Sci. Int. 2022. Vol. 330, Id. 111096. DOI: 10.1016/j.forsciint.2021.111096
  • 137. Young J.M., Linacre A. Use of a spray device to locate touch DNA on casework samples // J. Forensic Sci. 2020. Vol. 65, iss. 4. P. 1280–1288. DOI: 10.1111/1556-4029.14304
  • 138. Kanokwongnuwut P., Kirkbride K.P., Linacre A. Detecting latent DNA in wildlife forensic science investigations // Science & Justice. 2020. Vol. 60, iss. 4. P. 358–362. DOI: 10.1016/j.scijus.2020.02.001
  • 139. Deliveyner N., Cassey P., Linacre A. et al. Recovering trace DNA from the illegal wildlife trade // Forensic Sci. Int. Animals and Environments. 2022. Vol. 2. Id. 100040. DOI: 10.1016/j.fsiae.2021.100040
Еще
Статья научная