Shear angle effect on the engineering constants of woven fabrics

Бесплатный доступ

Fabrics play a key role when used as both reinforced material for composites and simply as apparels. In textile industry, fabric geometrics and weave pattern play a key role in the overall behaviour, mechanical response and general feel and texture of a piece of fabric. The engineering constants of are highly important parameters since the materials are largely orthotropic in nature. It is therefore, pertinent to investigate the effect of some key parameters on the engineering constants of a material, especially when they are used for HSE critical purposes such as reinforced composites employed in the design of aircraft wings, fuselages and other parts. The effect of shear angle on the six engineering constants is investigated using Ansys Material Modeler. Material properties are shown in Table 2 and gotten from measurement from the lab. The model was automatically achieved by inputting the textile geometrics, and generating the RVE, applying the boundary conditions, periodicity of the model and running the simulation. The material properties are given in Table 1, and are deduced from experimental data. To further expound the work, the effect of geometric properties such as fabric thickness, yarn width and yarn spacing will be explored in subsequent work.

Еще

Fabric, texture, textile, effect, composites

Короткий адрес: https://sciup.org/142240537

IDR: 142240537   |   DOI: 10.24412/2079-7958-2023-3-44-50

Список литературы Shear angle effect on the engineering constants of woven fabrics

  • Buyukbayraktar, R. B. (2022), A Generalised Geometric Model for the Determination of Shear Angle during the Bias-extension Test, The Journal of the Textile Institute, 2022; 113; pp. 2249-2262.
  • Prodromou, A. G. and Chen, J. (1997), On the Relationship between Shear Angle and Wrinkling of Textile Composites Preforms, Composite Part A, 1997; 28; pp. 491-503.
  • Mark, C. & Taylor, H. M. (2013), The Fitting of Woven Cloth to Surfaces, Journal of Textile Institute, 2013; 47; pp. 477-488.
  • Hu, J. L. and Zhang, Y. T. (1997), The KES Shear Test for Fabrics, Textile Research Journal, https://doi. org/10.1177/004051759706700904, 1997; 67(9); pp. 654-664.
  • Kawabata, S., Niwa, M. and Kawai, H. (1973), The Finite-deformation Theory of Plain-weave Fabrics, Part III: The Shear-deformation Theory, The Journal of the Textile Institute, https://doi. org/10.1177/004051759706700904; 1973; 64(2); pp. 62-85.
  • Boisse, P., Hamila, N., Guzman-Maldonado, E., Madeo, A., Hivet, G. and dell'Isola, F. (2017), The Bias-extension Test for the Analysis of In-plane Shear Properties of Textile Composite Reinforcements and Prepregs: A Review, International Journal of Material Forming, https://doi.org/10.1007/s12289-016-1294-7; 2017; 10(4), pp. 473-492.
  • Cao, J., Akkerman, R., Boisse, P., Chen, J., Cheng, H. S., de Graaf, E. F., Gorczyca, J. L., Harrison, P., Hivet, G., Launay, J., Lee, W., Liu, L., Lomov, S. V., Long, A., de Luycker, E., Morestin, F., Padvoiskis, J., Peng, X. 0., Sherwood, J. and Zhu, B. (2018), Characterization of Mechanical Behavior of Woven Fabrics: Experimental Methods and Benchmark Results, Composites Part A: Applied Science and Manufacturing, https://doi.org/10.1016/j. compositesa.2008.02.016; 2018; 39(6); pp. 1037-1053.
  • El Abed, B., Msahli, S., Bel Hadj Salah, H. and Sakli, F. (2011), Study of Woven Fabric Shear Behaviour, Journal of the Textile Institute, https://doi.org/10.1080/00405001003771226, 2011; 102(4); pp. 322-331.
  • Harrison, P. (2012), Normalization of Biaxial Bias-extension Test Results Considering Shear Tension Coupling, Composites Part A: Applied Science and Manufacturing, https://doi.org/10.1016/j.compositesa.2012.04.014; 43(9); pp. 1546-1554.
  • Lebrun, G., Bureau, M. N., and Denault, J. (2003), Evaluation of Bias-extension and Picture-frame Test Methods for the Measurement of Intraply Shear Properties of PP/glass Commingled Fabrics, Composite Structures, https://doi.org/10.1016/S0263-8223(03)00057-6, 2012; 61(4); pp. 341-352.
  • Potter, K. (2002), Bias Extension Measurements on Cross-plied Unidirectional Prepreg, Composites Part A: Applied Science and Manufacturing, https://doi.org/10.1016/S1359-835X(01)00057-4, 2002; 33(1); 63-73.
  • Wang, C., Shankar, K., Morozov, E., Ram Ramakrishnan, K. and Fien, A. (2020), Characterization of Shear Behavior in Stainless Steel Wire Mesh Using Bias-extension and Picture Frame Tests, Journal of Engineering Mechanics, https://doi.org/10.1061/(ASCE)EM.1943-7889.0001710, 2020;146(2); 040191271-04019127-12.
Еще
Статья научная