Simulation of concrete plate perforation by coupled finite element and smooth particle hydrodynamics methods

Автор: Dmitriev Andrei Nikolaevich, Lalin Vladimir Vladimirovich, Novozhilov Iurii Vladislavovich, Mikhaliuk Dmitrii Sergeevich

Журнал: Строительство уникальных зданий и сооружений @unistroy

Статья в выпуске: 7 (92), 2020 года.

Бесплатный доступ

The object of research is a concrete plate subjected to high-velocity projectile impact. The finite element method (FEM) is commonly used to obtain the nonlinear dynamic response of concrete structures. However, extreme loads such as projectile impact cause large strains, damages, material fragmentations. The mesh-based FEM cannot solve this task accurately. Smoothed particle hydrodynamics (SPH) is the meshless method that allows us to solve perforation and fragmentation problems but is characterized by higher computational costs. Methods. In this paper, we use the coupled FEM-SPH method to simulate the high-velocity concrete plate perforation. This method derives from switching from FEM to SPH by specific triggering criterion.Shear strain is the triggering criterion for the concrete plate perforation problem. The elastoplastic-damage Continuous Cap Surface Model (CSCM) describes nonlinear stress-strain relationships with strain-rate dependency for concrete. Results. Validation of CSCM on quasi-static cube compression gives good agreement with Eurocode-2 data: difference does not exceed 7% in FEM and 3.8% in the SPH method, respectively. For concrete plate perforation, the best match with the experiment is for the numerical model with spacings between FE nodes, and between SPH particles are equal to 2 mm. In this case, the ratio between the projectile diameter and the spatial discretization of approximately 6:1. The triggering value of shear strain for switching from FEM to SPH seems not to influence modeling results and computing time, independently of spatial discretization.

Еще

Concretes, calibration, computer simulation, ballistics, constitutive models, strength, numerical models, finite element method, smoothed particle hydrodynamics

Короткий адрес: https://sciup.org/143172534

IDR: 143172534   |   DOI: 10.18720/CUBS.92.7

Список литературы Simulation of concrete plate perforation by coupled finite element and smooth particle hydrodynamics methods

  • Dmitriev, A., Novozhilov, Y., Mikhalyuk, D., Lalin, V. Calibration and Validation of the Menetrey- Willam Constitutive Model for Concrete; 2020; Construction of Unique Buildings and Structures. 2020. 88. Pp. 8804. DOI: 10.18720/CUBS.88.4
  • Belytschko, T., Liu, W., Moran, B. Nonlinear finite elements for continua and structures. Choice Reviews Online. 2001. 38(07). Pp. 38-3926-38-3926. 10.5860/CHOICE.38-3926. URL: http://choicereviews.org/review/10.5860/CHOICE.38-3926. DOI: 10.5860/CHOICE.38-3926.URL
  • Zienkiewicz, O., Taylor, R., Zhu, J.Z. The Finite Element Method: its Basis and Fundamentals. 7th ed. Elsevier Ltd, 2013. 714 p. ISBN: 978-1-85617-633-0
  • Fries, T.P., Belytschko, T. The extended/generalized finite element method: An overview of the method and its applications. International Journal for Numerical Methods in Engineering. 2010. 84(3). Pp. 253-304. DOI: 10.1002/nme.2914
  • Lalin, V. V., Dmitriev, A.N., Diakov, S.F. Nonlinear deformation and stability of geometrically exact elastic arches. Magazine of Civil Engineering. 2019. 89(5). Pp. 39-51. DOI: 10.18720/MCE.89.4
  • Lalin, V. V., Yavarov, A. V., Orlova, E.S., Gulov, A.R. Application of the Finite Element Method for the Solution of Stability Problems of the Timoshenko Beam with Exact Shape Functions. Power Technology and Engineering. 2019. 53(4). Pp. 449-454. 10.1007/s10749-019- 01098-6.
  • DOI: 10.1007/s10749-019-01098-6
  • Lalin, V., Nenashev, V., Utimisheva, I., Orlovich, R. Buckling of Cantilever Beam Loaded by Potential Following Moment. Lecture Notes in Civil Engineering. 70. Springer, 2020. Pp. 643- 652.
  • Lalin, V.V., Kushova, D.A. New results in dynamics stability problems of elastic rods. Applied Mechanics and Materials. 2014. 617. Pp. 181-186.
  • DOI: 10.4028/www.scientific.net/AMM.617.181
  • Lalin, V. V., Beliaev, M.O. Bending of geometrically nonlinear cantilever beam. Results obtained by Cosserat - Timoshenko and Kirchhoff's rod theories. Magazine of Civil Engineering. 2015. 53(1).
  • DOI: 10.5862/MCE.53.5
  • Novozhilov, Y. V, Dmitriev, A.N., Mikhaluk, D.S., Chernukha, N.A., Feoktistova, L.Y., Volkodav, I.A. Aircraft NPP Impact Simulation Methodology. 16th International LS-DYNA® Users Conference. 2020. Pp. 1-14.
  • Novozhilov, Y.V., Mikhaluk, D.S., Feoktistova, L.Y. Calculation of aircraft impact load on the NPP nuclear island buildings. Computational Continuum Mechanics. 2018. 11(3). Pp. 288-301. 10.7242/1999-6691/2018.11.3.22. URL: http://journal.permsc.ru/index.php/ccm/article/view/CCMv11n3a22 (date of application: 21.09.2020).
  • DOI: 10.7242/1999-6691/2018.11.3.22.URL
  • Gertsik, S.M., Novozhilov, Y.V. NUMERICAL SIMULATION OF A MASSIVE IMPACTOR FALLING ONTO A REINFORCED CONCRETE BEAM. Problems of Strength and Plasticity. 2020. 82(1). Pp. 5-15. 10.32326/1814-9146-2020-82-1-5-15. URL: http://ppp.mech.unn.ru/index.php/ppp/article/view/553 (date of application: 21.09.2020).
  • DOI: 10.32326/1814-9146-2020-82-1-5-15.URL
  • Terranova, B., Whittaker, A., Schwer, L. Simulation of wind-borne missile impact using Lagrangian and Smooth Particle Hydrodynamics formulations. International Journal of Impact Engineering. 2018. 117. Pp. 1-12.
  • DOI: 10.1016/j.ijimpeng.2018.02.010
  • Attaway, S.W., Heinstein, M.W., Swegle, J.W. Coupling of smooth particle hydrodynamics with the finite element method. Nuclear Engineering and Design. 1994. 150(2-3). Pp. 199-205. 10.1016/0029-5493(94)90136-8. URL: https://linkinghub.elsevier.com/retrieve/pii/0029549394901368 (date of application: 10.06.2020).
  • DOI: 10.1016/0029-5493(94)90136-8.URL
  • Wu, H., Peng, Y., Kong, X. Notes on projectile impact analyses. Singapore, Springe Nature, 2019. 1-370 p.
  • ISBN: 9789811332531
  • Gingold, R.A., Monaghan, J.J. Kernel estimates as a basis for general particle methods in hydrodynamics. Journal of Computational Physics. 1982. 46(3). Pp. 429-453. 10.1016/0021-9991(82)90025-0. URL: https://linkinghub.elsevier.com/retrieve/pii/0021999182900250 (date of application: 10.06.2020).
  • DOI: 10.1016/0021-9991(82)90025-0.URL
  • Monaghan, J.J. Smoothed Particle Hydrodynamics. Annual Review of Astronomy and Astrophysics. 1992. 30(1). Pp. 543-574. 10.1146/annurev.aa.30.090192.002551. URL: http://www.annualreviews.org/doi/10.1146/annurev.aa.30.090192.002551 (date of application: 10.06.2020).
  • DOI: 10.1146/annurev.aa.30.090192.002551.URL
  • Gingold, R.A., Monaghan, J.J. Smoothed Particle Hydrodynamics: Theory and Application to Non-spherical Stars. Monthly Notices of the Royal Astronomical Society. 1977. 189. Pp. 375- 389.
  • DOI: 10.16309/j.cnki.issn.1007-1776.2003.03.004
  • Lucy, L.B. A numerical approach to the testing of the fission hypothesis. The Astronomical Journal. 1977. 82(12). Pp. 1013-1024. 10.1007/s00769-003-0757-y. URL: http://link.springer.com/10.1007/s00769-003-0757-y.
  • DOI: 10.1007/s00769-003-0757-y.URL
  • Monaghan, J.J., Gingold, R.A. Shock simulation by the particle method SPH. Journal of Computational Physics. 1983. 52(2). Pp. 374-389.
  • DOI: 10.1016/0021-9991(83)90036-0
  • Libersky, L.D., Petschek, A.G., Carney, T.C., Hipp, J.R., Allahdadi, F.A. High Strain Lagrangian Hydrodynamics. Journal of Computational Physics. 1993. 109(1). Pp. 67-75. 10.1006/jcph.1993.1199. URL: https://linkinghub.elsevier.com/retrieve/pii/S002199918371199X.
  • DOI: 10.1006/jcph.1993.1199.URL
  • Liu, G.R., Liu, M.B. Smoothed Particle Hydrodynamics: A Meshfree Particle Method. World Scientific Publishing Co. Pte Ltd, 2003. 449 p.
  • Li, S., Liu, W.K. Meshfree Particle Methods. Springer-Verlag Berlin Heidelberg, 2007. 508 p.
  • ISBN: 9783540222569
  • Schwer, L.E. Aluminium plate perforation: a comparative case study using Lagrange with erosion, multi-material ALE, and smooth particle hydrodynamics. 7th European LS-DYNA Conference. 2009.
  • Zhang, Z., Qiang, H., Gao, W. Coupling of smoothed particle hydrodynamics and finite element method for impact dynamics simulation. Engineering Structures. 2011. 33. Pp. 255-264. 10.1016/j.engstruct.2010.10.020. URL: www.elsevier.com/locate/engstruct (date of application: 10.06.2020).
  • DOI: 10.1016/j.engstruct.2010.10.020.URL
  • Fang, Q., Wu, H. Concrete Structures Under Projectile Impact. Singapore, Springer Singapore, 2017. 577 p. 978-981-10-3619-4.
  • ISBN: 9789811036194
  • Hanchak, S.J., Forrestal, M.J., Young, E.R., Ehrgott, J.Q. Perforation of concrete slabs with 48 MPa (7 ksi) and 140 MPa (20 ksi) unconfined compressive strengths. International Journal of Impact Engineering. 1992. 12(1). Pp. 1-7.
  • DOI: 10.1016/0734-743X(92)90282-X
  • Hallquist, J. LS-DYNA theory manual. Livermore, Livermore Software Technology Corporation, 2007. 884 p.
  • ISBN: 9254492507
  • De Vuyst, T., Vignjevic, R., Campbell, J.C. Coupling between meshless and finite element methods. International Journal of Impact Engineering. 2005. 31(8). Pp. 1054-1064.
  • DOI: 10.1016/j.ijimpeng.2004.04.017
  • Wu, Y., Magallanes, J.M., Choi, H.-J., Crawford, J.E. Evolutionarily Coupled Finite-Element Mesh-Free Formulation for Modeling Concrete Behaviors under Blast and Impact Loadings. Journal of Engineering Mechanics. 2013. 139(4). Pp. 525-536. 10.1061/(ASCE)EM.1943- 7889.0000497. URL: http://ascelibrary.org/doi/10.1061/%28ASCE%29EM.1943-7889.0000497 (date of application: 10.06.2020).
  • DOI: 10.1061/(ASCE)EM.1943-7889.0000497.URL
  • Wu, J., Wu, H., Tan, H.W.A., Chew, S.H. Multi-layer Pavement System under Blast Load. Singapore, Springer Singapore, 2018. 239 p. 978-981-10-5000-8.
  • ISBN: 9789811050008
  • Murray, Y. Users Manual for LS-DYNA Concrete Material Model 159. McLean, 2007. 77 p.
  • Murray, Y., Abu-Odeh, A., Bligh, R. Evaluation of LS-DYNA Concrete Material Model 159. McLean, 2007. 206 p.
  • Wei, J., Li, J., Wu, C. An experimental and numerical study of reinforced conventional concrete and ultra-high performance concrete columns under lateral impact loads. 2019. URL: (date of application: 26.07.2020).
  • DOI: 10.1016/j.engstruct.2019.109822
  • Weng, Y.-H., Qian, K., Fu, F., Fang, Q. Numerical investigation on load redistribution capacity of flat slab substructures to resist progressive collapse. Journal of Building Engineering. 2020. 29. Pp. 101109. 10.1016/j.jobe.2019.101109. URL: 10.1016/j.jobe.2019.101109 (date of application: 26.07.2020).
  • DOI: 10.1016/j.jobe.2019.101109.URL
  • Saini, D., Shafei, B. Concrete constitutive models for low velocity impact simulations. 2019. URL: (date of application: 26.07.2020).
  • DOI: 10.1016/j.ijimpeng.2019.103329
  • Levi-Hevroni, D., Kochavi, E., Kofman, B., Gruntman, S., Sadot, O. Experimental and numerical investigation on the dynamic increase factor of tensile strength in concrete. 2017. URL: (date of application: 26.07.2020).
  • DOI: 10.1016/j.ijimpeng.2017.12.006
  • Jiang, H., Zhao, J. Calibration of the continuous surface cap model for concrete. 2015. URL: (date of application: 26.07.2020).
  • DOI: 10.1016/j.finel.2014.12.002
  • EN1992-1-1. Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings. European Committee for Standartization, 2004. 227 p.
  • EN 12390-3:2009 Testing Hardened Concrete. - Part 3: Compressive Strength of Test Specimens. European Committee for Standartization, 2009. 22 p.
Еще
Статья научная