Одновременное стимулирующее воздействие новых технологий на социально-экономическую и экологическую устойчивость

Автор: Uçkaç Bekir Cihan, Coccia Mario, Kargı Bilal

Журнал: Bulletin Social-Economic and Humanitarian Research @bulletensocial

Статья в выпуске: 19 (21), 2023 года.

Бесплатный доступ

В данном исследовании рассматривается развитие технологий, призванных способствовать переходу к устойчивой энергетике и экологичности, оценивается их потенциальное влияние как на экологическую, так и на экономическую системы. На основе анализа данных из таких источников, как Scopus и патентные документы, выделены такие перспективные технологии, как морские ветряные турбины, хранение углерода, электрохимическая конверсия CO2, биоконверсия CO2, устойчивое производство аммиака и клеточное сельское хозяйство. Некоторые из этих технологий уже достигли значительных успехов на рынке, другие все еще находятся в стадии исследований и разработок. В исследовании подчеркивается значение этих технологий для сокращения выбросов CO2 и снижения вреда, наносимого окружающей среде, а также приводятся ценные сведения для политиков и инвесторов. Подчеркивается необходимость перехода стран от экономики, зависящей от ископаемого топлива, к принципам циркулярной экономики, возобновляемым источникам энергии и экологически безопасным методам производства. Несмотря на имеющиеся недостатки, данное исследование открывает важные технологические пути для устойчивого развития и экологических преобразований.

Еще

Энергия на основе ископаемого топлива, загрязнение окружающей среды, деградация окружающей среды, наука об устойчивом развитии, устойчивые технологии, экологические технологии, "зеленые" технологии, устойчивое развитие

Короткий адрес: https://sciup.org/14128267

IDR: 14128267   |   DOI: 10.52270/26585561_2023_19_21_100

Текст научной статьи Одновременное стимулирующее воздействие новых технологий на социально-экономическую и экологическую устойчивость

JEL: O30; Q01; Q50; Q53.

International Journal of Technology, Policy and Management ,    10(1/2),    73-91. doi.

Coccia, M. (2017). Sources of technological innovation: Radical and incremental innovation problem-driven to support competitive advantage of firms. Technology Analysis & Strategic Management , 29(9), 10481061. doi. https://doi.org/10.1080/09537325.2016.1268682

Coccia, M. (2018). A theory of the general causes of long waves: War, general purpose technologies, and economic change. Technological Forecasting & Social Change , 128, 287-295. doi. https://doi.org/10.1016/j.techfore.2017.11.013

Coccia, M. (2019). A Theory of classification and evolution of technologies within a generalized Darwinism, Technology Analysis & Strategic Management , 31(5), 517-531. doi. http://dx.doi.org/10.1080/09537325.2018.1523385

Coccia, M. (2020). Destructive technologies for industrial and corporate change. A. Farazmand A., Global Encyclopedia of Public Administration, Public Policy, and Governance . Springer, Cham, https://doi.org/10.1007/978-3-319-31816-5_3972-1

Coccia, M. (2021). Technological innovation. The Blackwell Encyclopedia of Sociology . Edited by George Ritzer and Chris Rojek. John Wiley & Sons, Ltd. https://doi.org/10.1002/9781405165518.wbeost011.pub2

Coccia, M. (2022). Probability of discoveries between research fields to explain scientific and technological change. Technology in Society , 68, 101874. doi. https://doi.org/10.1016/j.techsoc.2022.101874

Constant, K., Nourry, C., & Seegmuller, T. (2014). Population growth in polluting industrialization,

Crutzen, P.J., & Stoermer, E.F. (2000). The anthropocene, global IGBP, Change Newsletter , 41, 17-18.

CTCN, (2022). CO2 storage technologies. [Retrieved from] .

Cui, X., Tang, C., &  Zhang, Q. (2018). A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions, Advanced Energy Materials . 8(22), 1800369. doi. https://doi.org/10.1002/aenm.201800369

Edeme, R.K., Nelson, C., Nkalu, J., Idenyi, C., & Winnie, O.A. (2020). Infrastructural development, sustainable agricultural output and employment in ECOWAS countries , Sustainable Futures , 2, 100010. doi. https://doi.org/10.1016/j.sftr.2020.100010

Elavarasan, R.M., Pugazhendhi, R., Irfan, M., Mihet-Popa, L., Khan, I.A., & Campana, P.E. (2022). State-of-the-art sustainable approaches for deeper decarbonization in Europe – An endowment to climate neutral vision. Renewable and Sustainable Energy Reviews , 159, 112204. doi. https://doi.org/10.1016/j.rser.2022.112204

Elia, A., Taylor, M., Gallachóir, B., & Rogan, F. (2020). Wind turbine cost reduction: A detailed bottom-up analysis of innovation drivers, Energy Policy , 147, 111912. doi. https://doi.org/10.1016/j.enpol.2020.111912

Equinor, (2022). Carbon capture, utilisation and storage (CCS). [Retrieved from] .

Esmaeilzadeh, P. (2022). Benefits and concerns associated with blockchain-based health information exchange (HIE): a qualitative study from physicians' perspectives. BMC Medical Informatics and Decision Making, 22(1), 80. doi. https://doi.org/10.1186/s12911-022-01815-8

Foley, S.F., Gronenborn, D., Andreae, M.O., Kadereit, J.W., (…) Sirocko, F., & Crutzen, P.J. (2013). The palaeoanthropocene – The beginnings of anthropogenic environmental change, Anthropocene , 3, 83-88. doi. https://doi.org/10.1016/j.ancene.2013.11.002

Fowler, D., Brimblecombe, P., Burrows, (…) Unsworth, M.H., & Vieno M. (2020). A chronology of global air quality. Philosophical Trabsactions of the Royal Society A, 378, 20190314. doi. https://doi.org/10.1098/rsta.2019.0314

Ghiat I., & Al-Ansari T. (2021). A review of carbon capture and utilisation as a CO2 abatement opportunity within the EWF nexus. Journal of CO2 Utilization , 45, 101432. doi. https://doi.org/10.1016/j.jcou.2020.101432

Glikson, A. (2013). Fire and human evolution:   The deep-time blueprints of the Anthropocene.

MtribubM *,0 IHl»rH»tion»< ICC ГГ 4.0)

Global Change, (2022). Population growth. A project of the University of California Museum of Paleontology. [Retrieved from] .

Gonzalo, P.A., Benmessaoud, T., Entezami, M., & García-Márquez, F.P. (2022). Optimal maintenance management of offshore wind turbines by minimizing the costs, Sustainable Energy Technologies and Assessments, 52, 102230. doi. https://doi.org/10.1016/j.seta.2022.102230

Hausfather, Z., & Peters, G.P. (2020). Emissions - the 'business as usual' story is misleading. Nature , 577(7792), 618–620. doi. https://doi.org/10.1038/d41586-020-00177-3

Howson, P. (2019). Tackling climate change with blockchain. Nature Climate Change, 9, 644–645. doi. https://doi.org/10.1038/s41558-019-0567-9

Hughes, A., Park, A., Kietzmann, J., & Archer-Brown, C. (2019). Beyond Bitcoin: what blockchain and distributed ledger technologies mean for firms. Business Horizpns ,   62(3),   273–281. doi.

Iberdrola, (2022). Puertollano Green Hydrogen Plant. [Retrieved from] .

IEA, (2022). Carbon capture, utilisation and storage. [Retrieved from] .

IPCC, (2007), Summary for Policymakers, in Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, p.17.

IPCC, (2013). Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Javid, I., Chauhan, A., Thappa, S., Verma, S.K., Anand, Y., Sawhney, A., Tyagi, V.V., & Anand, S., (2021). Futuristic decentralised clean energy networks in view of inclusive-economic growth and sustainable society. Journal of Cleaner Production, 309, 127304. doi. https://doi.org/10.1016/j.jclepro.2021.127304

Kaldellis, J.K., &  Chrysikos, T. (2019). Wave energy exploitation in the Ionian Sea Hellenic coasts: spatial planning of potential wave power stations. International Journal of Sustainable Energy, 38(4), 312-332. doi. https://doi.org/10.1080/14786451.2018.1539395

Kaza, S., Yao, L.C., Bhada-Tata, P., & Van Woerden, F. (2018). What a Waste 2.0 : A Global Snapshot of Solid Waste Management to 2050. Urban Development;. Washington, DC: World Bank. [Retrieved from] .

Khan, M.N., Huang, J., Shah, A., (...), Zhang, H., & Núñez-Delgado, A. (2022). Mitigation of greenhouse gas emissions from a red acidic soil by using magnesium-modified wheat straw biochar. Environmental Research, 203,111879. doi. https://doi.org/10.1016/j.envres.2021.111879

La Scalia, G., La Fata, C.M., Certa, A., & Micale, R. (2022). A multifunctional plant for a sustainable reuse of marble waste toward circular economy. Waste Management & Research . 40(6), 806-813. doi. https://doi.org/10.1177/0734242X211029161

Linstone, H.A. (2010). Historians and complexity: trends vs. collapses? Technological Forecasting and Social Change , 77(8), 1415-1428.

Lv, X.-W., Weng, C.-C., Z.-Y. (2020). Ambient ammonia electrosynthesis: Current status, challenges, and perspectives. Chem. Sus. Chem , 13(12), 3061-3078. https://doi.org/10.1002/cssc.202000670

Magdoff, F. (2013). Global resource depletion: Is population the problem? Monthly Review, 64(8), 35-50. doi. https://doi.org/10.14452/MR-064-08-2013-01_2

Magdoff, F., & Foster, B.J. (2011). What Every Environmentalist Needs to Know About Capitalism .

118

Monthly Review Press: New York.

Marsh, G.P. (1864). Man and Nature . Reprinted in 1965. Harvard University Press, Cambridge.

Meadows, D., Meadows, D., Randers, J., & Behrens III, W.W. (1972). The Limits to Growth; A Report for the Club of Rome's Project on the Predicament of Mankind. New York: Universe Books.

Moritz, J., Tuomisto, H.L., & Ryynänen, T. (2022). The transformative innovation potential of cellular agriculture: Political and policy stakeholders’ perceptions of cultured meat in Germany, Journal of Rural Studies, 89, 54-65. doi. https://doi.org/10.1016/j.jrurstud.2021.11.018

Mosleh, M., Roshani, S., & Coccia, M. (2022). Scientific laws of research funding to support citations and diffusion of knowledge in life science. Scientometrics 127, 1931-1951. doi. https://doi.org/10.1007/s11192-022- 04300-1

Moss, R., Edmonds, J., & Hibbard, K. et al., (2010). The next generation of scenarios for climate change research and assessment. Nature, 463, 747–756. doi. https://doi.org/10.1038/nature08823

NASA Global Climate Change, (2022). The Effects of Climate Change . [Retrieved from] .

National Academies of Sciences, Engineering, and Medicine, (2022). Carbon Dioxide Utilization Markets and Infrastructure: Status and Opportunities: A First Report . Washington, DC: The National Academies Press. doi. https://doi.org/10.17226/26703

Nemet, G.F. (2006). How well does learning-by-doing explain cost reductions in a carbon-free energy technology? FEEM Working Paper , No.143.06. doi. https://doi.org/10.2139/ssrn.946173

NIST, (2022). NIST Reference Fluid Thermodynamic and Transport Properties Database (REFPROP): Version 10 [Retrieved from] .

Nti, K.E., Cobbina, S.J., Attafuah, E.E., Opoku, E., & Gyan, M.A. (2022). Environmental sustainability technologies in biodiversity, energy, transportation and water management using artificial intelligence: A systematic review. Sustainable Futures , 4, 100068. doi. https://doi.org/10.1016/j.sftr.2022.100068

Oh, H.S. (2020). Unit commitment considering the impact of deep cycling, Sustainable Futures , 2,

Peplow, M. (2022). The race to upcycle CO2 into fuels, concrete and more. Nature, 603, 780-783. doi. https://doi.org/10.1038/d41586-022-00807-y

Pérez, C.J., Ponce, C.J. (2015). Disruption costs, learning by doing, and technology adoption,

International Journal of Industrial Organization , 41, 64-75. doi. https://doi.org/10.1016/j.ijindorg.2015.03.010

Pronti, A., & Coccia, M. (2020). Multicriteria analysis of the sustainability performance between agroecological and conventional coffee farms in the East Region of Minas Gerais (Brazil). Renewable Agriculture and Food Systems , 36(3), 299-306. doi. https://doi.org/10.1017/S1742170520000332

Pronti, A., & Coccia, M. (2021). Agroecological and conventional agricultural systems: comparative analysis of coffee farms in Brazil for sustainable development, International Journal Sustainable Development , 23(3/4), 223-248. doi. https://doi.org/10.1504/IJSD.2020.115223

Resources Magazine, (2022). Carbon Capture and Storage, 101. [Retrieved from] .

Roger, M., Brown, F., Gabrielli, W., et al . (2018). Efficient hydrogendependent carbon dioxide reduction by Escherichia coli. Current Biology, 28(1), 140-145. doi. https://doi.org/10.1016/j.cub.2017.11.050

Roshani, S., Bagheri, R., Mosleh, M., & Coccia, M. (2021). What is the relationship between research funding and citation-based performance? A comparative analysis between critical disciplines. Scientometrics , 126, 7859-7874. doi. https://doi.org/10.1007/s11192-021-04077-9

Ruddiman, W.F. (2003). The anthropogenic greenhouse era began thousands of years ago. Climate Change , 61, 261-293. doi. https://doi.org/10.1023/B:CLIM.0000004577.17928.fa

Saeli, M.I.N., Capela, M., Campisi, T., Seabra, M.P.,

Tobaldi,

Architectural technologies for life environment: Spent coffee ground reuse in lime-based mortars. A preliminary assessment for innovative green thermo-plasters, Construction and Building Materials , 319, 126079. doi. https://doi.org/10.1016/j.conbuildmat.2021.126079

Sahal, D. (1981). Patterns of Technological Innovation , Addison-Wesley Publishing Company, Inc.: Reading, MA, USA.

Sanni, M., & Verdolini, E. (2022). Eco-innovation and openness: Mapping the growth trajectories and the knowledge structure of open eco-innovation. Sustainable Futures ,    4,    100067. doi.

Scopus, (2022). Start exploring, search documents. [Retrieved from].

Soloveichik, G. (2019). Electrochemical synthesis of ammonia as a potential alternative to the Haber– Bosch process. Nature Catalysis, 2, 377-380. doi. https://doi.org/10.1038/s41929-019-0280-0

Steffen, W., Crutzen, P.J., & McNeill J.R. (2007). The Anthropocene: are humans now overwhelming the great forces of nature?         AMBIO ,    36,    614-621.    doi.    https://doi.org/10.1579/0044-

Steingraber, S. (1997). Industrial pollution, pesticides, and cancer. Living Downstream. An Ecologist Looks at Cancer and the Environment . Reading, Addison-Wesley, Massachusetts,

Sterner, T., & Coria, J. (2012). Policy instruments for environmental and natural resource management , 2nd ed. RFF Press and Routledge, New York, NY.

Strepparava, D., Nespoli, L., Kapassa, E., (...), Katelaris, L., & Medici, V. 2022. Deployment and analysis of a    blockchain-based    local    energy market.    Energy Reports 8,    99-113.    doi.

Sulston, J. (2012). People and the Planet, The Royal Society (Britain). [Retrieved from] .

Tavella, F., Giusi, G., & Ampelli, C. (2022). Nitrogen reduction reaction to ammonia at ambient conditions: A short review analysis of the critical factors limiting electrocatalytic performance. Current Opinion in Green and Sustainable Chemistry , 35, 100604, doi. https://doi.org/10.1016/j.cogsc.2022.100604

Thomson, M.C., & Stanberry, L.R. (2022). Climate change and vectorborne diseases. New England

Wang, L., Kolios, A., Liu, X., Venetsanos, D., &  Rui, C. (2022). Reliability of offshore wind turbine support structures: A state-of-the-art review. Renewable and Sustainable Energy Reviews, 161, 112250. doi. https://doi.org/10.1016/j.rser.2022.112250

Статья научная