Synthesis of optimal differentiators for the locally oriented texture detection algorithm
Автор: Gruzman Igor Semenovich
Журнал: Компьютерная оптика @computer-optics
Рубрика: Обработка изображений: Восстановление изображений, выявление признаков, распознавание образов
Статья в выпуске: 1 т.36, 2012 года.
Бесплатный доступ
A method is proposed for constructing noise-resistant mask differentiating filters minimizing error probability in locally oriented texture detection algorithm based on gradient structure tensor. A gaussian approximation of the components joint distribution of the gradient structure tensor is proposed to solve the problem of synthesizing. It is shown that a decrease in the systematic error leads to a considerable increase in the accuracy of directional field estimation. It is shown that the use of optimal mask differentiating filter greatly reduces the probability of error detection.
Oriented texture, gradient structure tensor, mask differentiating filter, error detection
Короткий адрес: https://sciup.org/14059052
IDR: 14059052