Синтез, структура и свойства Zn0,3Ni0,7-xCoxFe2O4 (x = 0-0,6) феррита
Автор: Шерстюк Дарья Петровна, Стариков Андрей Юрьевич, Живулин Владимир Евгеньевич, Жеребцов Дмитрий Анатольевич, Винник Денис Александрович
Журнал: Вестник Южно-Уральского государственного университета. Серия: Химия @vestnik-susu-chemistry
Рубрика: Физическая химия
Статья в выпуске: 4 т.12, 2020 года.
Бесплатный доступ
Резюме: Ni-Zn ферриты со структурой шпинели уже на протяжении многих лет активно используют в качестве разнообразных компонент для радиочастотных устройств. Проведен анализ современной научной литературы в результате чего был определен легирующий элемент, который будет менять комплекс физико-химических свойств исходной матрицы Ni-Zn феррита. В работе представлены результаты исследования феррита с общей формулой Zn0,3Ni0,7-xCoxFe2O4, где x принимает значения от 0 до 0,6 с шагом 0,2. Помимо легирующего элемента на свойства исследуемых образцов влияет подбор метода получения материала, а также температурно-временной режим синтеза. Исследуемые образцы были получены методом твердофазного синтеза в трубчатой печи с карбидокремниевыми нагревателями при температуре спекания 1150 °С в течение 5 часов изотермической выдержки. Задача этого исследования состоит в том, чтобы получить новые составы никель-цинкового феррита с допированием кобальтом по уже известной технологии для более широкого концентрационного диапазона, а также в исследовании их свойств. Проведен анализ химического состава на сканирующем электронном микроскопе Jeol JSM 7001F, оборудованном рентгено-дисперсионным спектрометром Oxford INCA X-max 80 для определения фактической брутто-формулы спеченных образцов, результаты которого хорошо согласуются с теоретическими заданными формулами. В результате рентгенофазового анализа (Rigaku Ultima IV) установили, что все исследуемые образцы монофазные и обладают структурой шпинели с Fd-3m пространственной группой. Параметры элементарной ячейки монотонно возрастают при увеличении концентрации кобальта x(Co) (от 8,3643(4) Å до 8,3983(4) Å). В результате исследования кривых ДСК (Netzsch, STA 449 F1 Jupiter) выяснили, что частичное замещение ионов Ni и Zn ионами кобальта приводит к снижению температуры Кюри (от 341 °С до 419 °С). Так как детали из ферритов используют в различных температурных условиях, такое легирование дает возможность эффективно управлять диапазоном рабочих температур материала.
Ni-Zn-Co ферриты, никель-цинк-кобальтовые ферриты, оксидные материалы, магнитные материалы, температура Кюри, ДСК, дифференциальная сканирующая калориметрия
Короткий адрес: https://sciup.org/147234266
IDR: 147234266 | DOI: 10.14529/chem200406
Список литературы Синтез, структура и свойства Zn0,3Ni0,7-xCoxFe2O4 (x = 0-0,6) феррита
- Журавлев, Г.И. Химия и технология ферритов / Г.И. Журавлев. - Л.: Изд-во Химия, 1970. 192 с.
- Ситидзе, Ю. Ферриты / Ю. Ситидзе, Х. Сато; пер. с яп. Л.М. Голдина, В.М. Багирова. -М.: МИР, 1964. - 407 с.
- Смит, Я. Ферриты / Я. Смит, Х. Вейн; пер. с англ. Т.А. Елкина, А.В. Залесского, П.Н. Стеценко. - М.: Изд-во иностранной литературы, 1962. - 504 с.
- Spectral Studies of Co Substituted Ni-Zn Ferrites / M.A. Amer, A. Tawfik, A.G. Mostafa et al. // J. Magn. Magn. Mater. - 2011. - V. 323, is. 11. - P. 1445-1452. DOI: 10.1016/j.jmmm.2010.12.036
- Effect of Cation Distribution on the Magnetic and Hyperfine Behaviour of Nanocrystalline Co Doped Ni-Zn Ferrite (Ni0.4Zn0.4Co0.2Fe2O4) / M. Dalal, A. Mallick, A.S. Mahapatra et al. // Material Res. Bull. - 2016. - V. 76. - P. 389-401. DOI: 10.1016/j.materresbull.2015.12.028
- Investigation of Structural, Magnetic and Mossbauer Properties of Co2+ And Cu2+ Substituted Ni-Zn Nanoferrites / Sarveena, G. Kumar, A. Kumar et al. // Ceram. Int. - 2016. - V. 42. - P. 49935000. DOI: 10.1016/j.ceramint.2015.12.012
- Studies on Structural, Magnetic, and DC Electrical Resistivity Properties of Coo.5Mo.37Cuo.i3Fe2O4 (M = Ni, Zn and Mg) Ferrite Nanoparticle Systems / A. Ramakrishna, N. Murali, S.J. Margarette et al. // Adv. Powder Technol. - 2018. - V. 29. - P. 2601-2607. DOI: 10.1016/j.apt.2018.07.005
- Houshiar, M. Effect of Cu Dopant On the Structural, Magnetic and Electrical Properties of Ni-Zn Ferrites / M. Houshiar, L. Jamilpanah // Material Res. Bull. - 2018. - V. 98. - P. 213-2181. DOI: 10.1016/j .materresbull.2017.10.024
- Paramesh, D. Effect of Aluminium Substitution on the Electrical Properties of Ni-Zn Nanofer-rites / D. Paramesh, K. Vijaya Kumar, P. Venkat Reddy // J. Magn. Magn. Mater. - 2017. - V. 444. -P. 371-377. DOI: 10.1016/j.jmmm.2017.08.037
- Haslim, Mohd. Structural, Magnetic and Electrical Properties of Al3+ Substituted Ni-Zn Ferrite Nanoparticles / Mohd. Hashima, Alimuddina, Shalendra Kumar // J. Alloy Compd. - 2012. - V. 511. -P. 107-114. DOI: 10.1016/j.jallcom.2011.08.096
- Spin Glass Behavior in Zn0.8_Xnixcu0.2Fe2O4 (0 < X < 0.28) Ferrites / W. Yang, X. Kan, X. Liu et al. // Ceram. Int. - 2019. - V. 45, № 17, Part B. - P. 23328-23332. DOI: 10.1016/j.ceramint.2019.08.032
- Structural and Magnetic Investigations: Study of Magnetocrystalline Anisotropy and Magnetic Behavior of 0.1% Cu2+ Substituted Ni-Zn Ferrite Nanoparticles / K.S. Ramakrishna, C. Srinivas, C.L. Prajapat et al. // Ceram. Int. - 2018. - V. 44, № 1. - P. 1193-1200. DOI: 10.1016/j.ceramint.2017.10.011
- Houshiar, M. Effect of Cu Dopant on the Structural, Magnetic and Electrical Properties of Ni-Zn Ferrites / M. Houshiar, L. Jamilpanah // Mater. Res. Bull. - 2018. - V. 98. - P. 213-218. DOI: 10.1016/j.materresbull.2017.10.024
- Effect of Chromium Substitution on the Dielectric Properties of Mixed Ni-Zn Ferrite Prepared by WOWS Sol-Gel Technique / M. Ashtar, A. Munir, M. Anis-ur-Rehman et al. // Mater. Res. Bull. -2016. - V. 79. - P. 14-21. DOI: 10.1016/j.materresbull.2016.02.044
- Gabal, M.A. Cr-Substituted Ni-Zn Ferrites Via Oxalate Decomposition. Structural, Electrical and Magnetic Properties / M.A. Gabal, Y.M. Al Angari, F.A. Al-Agel // J. Magn. Magn. Mater. -2015. - V. 391. - P. 108-115. DOI: 10.1016/j.jmmm.2015.04.115
- Structural and Electromagnetic Characterization of Cr-Substituted Ni-Zn Ferrites Synthesized Via Egg-White Route / M.A. Gabal, W.A. Bayoumy, A. Saeed et al. // J. Mol. Struct. - 2015. -V. 1097. - P. 45-51. DOI: 10.1016/j.molstruc.2015.04.032
- Magnetic and Microwave Absorbing Properties of Co2+ Substituted Nickel-Zinc Ferrites with the Emphasis on Initial Permeability Studies / J.S. Ghodake, R.C. Kambale, T.J. Shinde et al. // J. Magn. Magn. Mater. - 2016. - V. 401. - P. 938-942. DOI: 10.1016/j.jmmm.2015.11.009
- The Influence of Nd Substitution in Ni-Zn Ferrites for the Improved Microwave Absorption Properties / K. Qian, Z. Yao, H. Lin et al. // Ceram. Int. - 2020. - V. 46, № 1. - P. 227-235. DOI: 10.1016/j.ceramint.2019.08.255
- Structural, Electrical and Magnetic Parameters Evaluation of Nanocrystalline Rare Earth Nd3+-Substituted Nickel-Zinc Spinel Ferrite Particles / H. Javed, F. Iqbal, P.O. Agboola et al. // Ceram. Int. -2019. - V. 45, № 8. - P. 11125-11130. DOI: 10.1016/j.ceramint.2019.02.176
- Structural, Magnetic, Optical Properties and Cation Distribution of Nanosized Ni0.3Cu0.3Zn0.4tmxfe2-Xo4 (0.0 < X < 0.10) Spinel Ferrites Synthesized by Ultrasound Irradiation / Y. Slimania, M.A. Almessiere, M. Sertkol et al. // Ultrasonics - Sonochemistry. - 2019. - V. 57. -P. 203-211. DOI: 10.1016/j.ultsonch.2019.05.001
- Tailoring The Properties of Ni-Zn-Co Ferrites by Gd3+ Substitution / M.D. Hossain, M.N.I. Khan, A. Nahar et al. // J. Magn. Magn. Mater. - 2020. - V. 497. - P. 165978. DOI: 10.1016/j.jmmm.2019.165978
- Rady, K.E. Improvement the Physical Properties of Nanocrystalline Ni-Zn Ferrite Using the Substitution by (Mg-Ti) Ions / K.E. Rady, R.A. Elsad // J. Magn. Magn. Mater. - 2020. - V. 498. -P. 166195. DOI: 10.1016/j.jmmm.2019.166195
- Synthesis, Structure and Properties of Barium and Barium Lead Hexaferrite / S.A. Gudkova, D A. Vinnik, V.E. Zhivulin et al. // J. Magn. Magn. Mater. - 2019. - V. 401. - P. 101-104. DOI: 10.1016/j.jmmm.2017.11.114
- Shannon, R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides / R.D. Shannon // Scta Cryst. - 1976. - P. 751-767
- Van Horn, J.D. Electronic Table of Shannon Ionic Radii / J.D. Van Horn // Electronic Table. -2001.