Синтез, свойства и области применения МАХ-фазы Cr2AlC (обзор)

Автор: Крутский Ю. Л., Гудыма Т. С., Апарнев А. И., Крутская Т. М., Бусыгин С. Л.

Журнал: Журнал Сибирского федерального университета. Серия: Техника и технологии @technologies-sfu

Рубрика: Исследования. Проектирование. Опыт эксплуатации

Статья в выпуске: 6 т.17, 2024 года.

Бесплатный доступ

Обобщены исследования зарубежных и российских ученых по получению, изучению свойств и возможному использованию одной из перспективных МАХ-фаз - Cr2AlC. Это соединение, как и все МАХ фазы, имеет свойства как металлов, так и керамики. МАХ-фаза Cr2AlC обладает сравнительно малой по сравнению с жаропрочными сплавами плотностью, высокими значениями тепло- и электропроводности, прочности, повышенным модулем упругости, превосходной стойкостью к высокотемпературному окислению и термическим ударам, имеет высокую температуру плавления, легко поддается механической обработке. Это соединение перспективно для использования в защитных покрытиях. Также оно является прекурсором для получения МХенa Cr2CТх (2D-молекулярного соединения), обладающего уникальными адсорбционными и каталитическими характеристиками.

Еще

Тройные слоистые соединения, мах-фаза cr2alc, свойства металлов и керамики, высокотемпературное окисление, защитные покрытия, мхен cr2cтх

Короткий адрес: https://sciup.org/146282908

IDR: 146282908

Список литературы Синтез, свойства и области применения МАХ-фазы Cr2AlC (обзор)

  • Сметкин А. А., Майорова Ю. К. Свойства материалов на основе МАХ‑фаз (Обзор). ВЕСТНИК ПНИПУ. Машиностроение, материаловедение, 2015, 17(4), 120–138. [Smetkin A. A., Mayorova Yu. K. Properties of materials based on MAX phases (Review). BULLETIN OF PNIPU. Mechanical engineering, materials science, 2015, 17(4), 120–138 (In Rus.)].
  • Gonzalez- Julian J. Processing of MAX phases: from synthesis to applications. Journal of the American Ceramic Society. 2021, 104, 659–690.
  • Reghunath B. S., Davis D., Devi K. R.S. Synthesis and characterization of Cr2AlC MAX phase for photocatalytic applications. Chemosphere. 2021, 283, 131281.
  • Tabares E., Kitzmantel M., Neubauer E., Jimenez- Morales A., Tsipas S. A. based additive manufacturing of Ti3SiC 2 and Cr2AlC MAX phases as candidates for high temperature heat exchanges. Journal of the European Ceramic Society. 2022, 42, 841–849.
  • Panigrahi B. B., Chu M.-C., Kim Y.-I., Cho S.-J., Gracio J. J. Reaction synthesis and pressureless sintering of Cr2AlC powder. Journal of the American Ceramic Society. 2010, 93, 1530–1533.
  • Duan X., Chen L., Jia D., Zhou Y., Van der Zwaag S., Sloof W. G. Synthesis of high- purity, isotropic or textured Cr2AlC bulk ceramics by spark plasma sintering of pressure- less sintered powder. Journal of the European Ceramic Society. 2015, 35, 1393–1400.
  • Rajkumar Y., Panigrahi B. B. Thermodynamic аssessments and mechanically activated synthesis of ultrafine Cr2AlC MAX phase powders. Advanced Powder Technology. 2017, 17, 732–739.
  • Oh H.-C., Lee S.-H, Choi S.-C. The reaction mechanism for the low temperature synthesis of Cr2AlC under electronic field. Journal of Alloys and Compounds. 2014, 587, 296–302.
  • Yan M., Duan X., Zhang Z., Liao X., Zhang X., Qiu B., Wei Z., He P., Rao J., Jia D., Zhou Y. Effect of ball milling treatment on the microstructures and properties of Cr2AlC powders and hot pressed bulk ceramics. Journal of the European Ceramic Society. 2019, 39, 5140–5148.
  • Sharma P., Pandey O. P. Non- isothermal oxidation kinetics of laminated Cr2AlC MAX phase. Journal of Alloys and Compounds. 2019, 773, 872–882.
  • Sharma P., Pandey O. P. Thermal kinetics involved during the solid- state synthesis of Cr2AlC MAX phase. Journal of Thermal Analysis and Calorimetry. 2021, 143, 3997–4008.
  • Xue M., Zhang X., Tang H., Li C. Synthesis of high purity Cr2AlC nanolamellas with improved tribological properties for oil- based additives. RSC Advances. 2014, 4, 39280–39286.
  • Tan L., Guan C., Tian Y., Dang P., Wang S., Li J., Li W., Zhao Z. Synthesis and tribological properties of ultrafine Cr2AlC MAX phase. Journal of the Ceramic Society of Japan. 2019, 127, 754–760.
  • Liu P., Hu M., Hu L., Yin M., Wu H. Fabrication of Cr2AlC powder by molten salt electrolysis at 850 oC with good oxidation resistance. Journal of Alloys and Compounds. 2020, 826, 154003.
  • Tian W.-B., Wang P.-L., Can Y.-M., Zhang G.-J. Cr2AlC powders prepared by molten salt method. Journal of Alloys and Compounds. 2008, 461, 5–10.
  • Abdelkader A. M. Molten salts electrochemical synthesis of Cr2AlC. Journal of the European Ceramic Society. 2016, 36, 33–42.
  • Yeh L. C., Cuo C. W. Effect of Al and Al4C 3 contents on combustion synthesis of Cr2AlC from Cr2O3–Al–Al4C 3 powder compacts. Journal of Alloys and Compounds. 2011, 509, 651–655.
  • Miloserdov P. A., Gorshkov V. A., Yukhvid V. I. High- temperature synthesis of cast Cr2AlC at an inert gas overpressure. Inorganic Materials. 2013, 49, 781–785.
  • Горшков В. А., Милосердов П. А., Лугинина М. А., Сачкова Н. В., Беликова А. Ф. Высокотемпературный синтез литого материала с максимальным содержанием МАХ‑фазы Cr2AlC. Неорганические материалы, 2017, 53(3), 260–266. [Gorshkov V. A., Miloserdov P. A., Luginina M. A., Sachkova N. V., Belikova A. F. High- temperature synthesis of cast material with a maximum content of MAX phase Cr2AlC. Inorganic Materials, 2017, 53(3), 260–266 (In Rus.)].
  • Gorshkov V. A., Miloserdov P. A., Sachkova N. V. High- temperature synthesis of cast materials based on the MAX phase Cr2AlC using CaCrO4 + Al + C mixtures. Inorganic Materials. 2020, 56, 321–327.
  • Wang L., Dai W., Zhang K., Mei T., Zhuang H., Song S., Yang S., Zhou Q., Qian Y. One step conversion of waste polyethylene to Cr3C 2 nanorods and Cr2AlC particles under mild conditions. Inorganic Chemistry Frontiers. 2018, 5, 2893–2897.
  • Li X., Badie S., Gonzalez- Julian J., Schwaiger R., Malzbender J. Abrasive behavior of M2AlC MAX phase materials and its relation to the brittleness index. Ceramics International. 2022, 48, 19501–19506.
  • Xiao L.-O., Li S.-B., Song G., Sloof W. G. Synthesis and thermal stability of Cr2AlC. Journal of the European Ceramic Society. 2011, 31, 1497–1502.
  • Tian W., Wang P., Zhang G., Kan Y., Li Y., Yan D. Synthesis and thermal and electrical properties of bulk Cr2AlC. Scripta Materialia. 2006, 54, 841–846.
  • Ying G., He X., Li M., Han W., He F., Du S. Synthesis and mechanical properties of high-purity Cr2AlC ceramics. Materials Science and Engineering A. 2011, 528, 2635–2640.
  • Li S., Chen X., Zhou Y., Song G. Influence of grain size on high temperature oxidation behavior of Cr2AlC ceramics. Ceramics International. 2013, 39, 2715–2721.
  • Tian W., Vanmeensel K., Wang P., Zhang G., Li Y., Vleugels G., Van der Biest O. Synthesis and characterization of Cr2AlC ceramics prepared by spark plasma sintering. Materials Letters. 2007, 61, 4442–4445.
  • Tian W., Sun Z., Du Y., Hashimoto H. Synthesis reaction of Cr2AlC from Cr–Al4C 3–C by pulse discharge sintering. Materials Letters. 2008, 62, 3852–3855.
  • Sun Z., Hashimoto H., Tian W., Zou Y. Synthesis of the MAX phases by pulse discharge sintering. International Journal of Applied Ceramic Technology. 2010, 7, 704–718.
  • Shamsipoor A., Farvizi M., Razavi M., Keynavi A. Influences of processing parameters on the microstructure and wear performance of Cr2AlC MAX phase prepared by spark plasma sintering method. Journal of Alloys and Compounds. 2020, 815, 153245.
  • Zakeri-Shahroudi F., Ghasemi B., Abdolahpour H., Razavi M. Sintering behavior of Cr2AlC MAX phase synthesized by spark plasma sintering. International Journal of Applied Ceramic Technology. 2022, 19, 1309–1318.
  • Zamulaeva E. I., Levashov E. A., Skryleva E. A., Sviridova T. A., Kiryukhatsev- Korneev Ph. V. Conditions for formation of MAX phase Cr2AlC in electrospark coating deposited onto titanium alloy. Surface & Coating Technology. 2016, 298, 15–23.
  • Liu J., Zuo X., Wang Z., Wang L., Wu X., Ke P., Wang A. Fabrication and mechanical properties of high purity of Cr2AlC coatings by adjustable Al contents. Journal of Alloys and Compounds. 2018, 753, 11–17.
  • Zhang F., Yan S., Li C., Ding Y., He J., Yin F. Synthesis and characterization of MAX phase Cr2AlC based composite coatings by plasma spraying and post annealing. Journal of the European Ceramic Society. 2019, 39, 5132–5139.
  • Zhang Z., Qian Y., Hu J., Zuo J., Li M. Effect of annealing on microstructure evolution and corrosion resistance of an amorphous Cr- C coatings. Corrosion Science. 2021, 178, 109062.
  • Zhang F., Yu G., Yan S., Chen J., Wang L., Yun F. Influence of Al content and post- annealing on synthesis and mechanical properties of plasma sprayed Cr- C composite coatings. Ceramics International. 2022, 48, 17343–17351.
  • Zhang F., Yu G., Yan S., Chen J., Ma H., Yun F. Characterization and reaction mechanism of in- situ laminated Cr2AlC coatings by plasma spraying Cr3C 2/Al/C powder mixtures. Surface & Coating Technology. 2023, 456, 129271.
  • Barsoum M. W., Brodkin D., El- Radhy T. Layered machinable ceramics for high temperature applications. Scripta Materialia. 1996, 36, 535–541.
  • Tian W.-b., Wang P.-l., Zhang G.-j., Kan Y.-m., Li Y.-h. Mechanical properties of Cr2AlC ceramics. Journal of the American Ceramic Society. 2017, 90(5), 1663–1666.
  • Ward J., Bowden D., Prestat E., Holdsworth S., Steward D., Barsoum M. W., Preuss M., Francel P. Corrosion performance of Ti3SiC 2, Ti3AlC 2 and Cr2AlC MAX phases in simulated primary water conditions. Corrosion Science. 2018, 139, 444–453.
  • Li H., Wang S., Wu G., Zhou D., Pu J., Yu M., Wang Q., Sun Q. Oxidation and hot corrosion behaviors of MAX‑phase Ti3SiC 2, Ti2AlC, Cr2AlC. Ceramics International. 2022, 48, 26618–26628.
  • Wang Z., Ma G., Liu L., Wang L., Ke P., Xie Q., Wang A. High- performance Cr2AlC MAX phase coatings: Oxidation mechanisms in the 900–1100 oC temperature range. Corrosion Science. 2020, 167, 108492.
  • Zuber A., Gauthier- Brunet V., Roger J., Julian J., Оuisse T., Dubois S. Towards a better understanding of the high- temperature oxidation of MAX phase Cr2AlC. Journal of the European Ceramic Society. 2022, 42, 2089–2096.
  • Zuber A., Gauthier- Brunet V., Roger J., Julian J., Оuisse T., Dubois S. Cr2AlC high temperature oxidation under dry and wet air: Understanding of the oxidation mechanism. Journal of the European Ceramic Society. 2023, 43, 5159–5167.
  • Li Y., Hu J., Li J., Ma K., Wang W., Zhang X., Zhang Y., Li M. Microstructure evolution and cyclic oxidation performance of Cr2AlC transition layer as active diffusion barrier for Ni- based superalloy and NiCrAlY coatings. Corrosion Science. 2023, 222, 11416.
  • Mengis L., Ockay C., Laska N., Galetz M. G. Synthesis, oxidation resistance and mechanical properties of a Cr2AlC‑based MAX‑phase coating on TiAl. Intermetallics. 2023, 163, 108039.
  • Hing G., Wan H., Deng C., Di Y., Ding J., Ma B., Wang Z., Zhu H., Yu C. Thermal stability and selective nitridation of Cr2AlC in nitrogen at elevated temperatures. Ceramics International. 2022, 48, 33151–33159.
  • Li S., Li H., Zhou Y., Zhau H. Mechanism of abnormal thermal shock behavior of Cr2AlC. Journal of the European Ceramic Society. 2014, 34, 1083–1088.
  • Wang Z., Wang C., Zhang Y., Wang A., Ke P. M‑site solid solution of vanadium enables the promising mechanism and high- temperature tribological properties of Cr2AlC coatings. Materials & Design. 2022, 222, 111060.
  • Hu S., Li S., Li H., Zhou Y. Oxyacetylene torch testing and microstructural characterization of a Cr2AlC ceramic. Journal of Alloys and Compounds. 2018, 740, 77–81.
  • Shi H., Azmi R., Han L., Tang C., Weisenburger A., Heinzel A., Maibach J., Stüber M., Wang K., Müller G. Corrosion behavior of Al- containing MAX‑phase coatings exposed to oxygen containing molten Pb at 600 oC. Corrosion Science. 2022, 201, 110275.
  • Azina K., Badie S., Litnovsky A., Silverstoni L., Sani E., Gonzalez- Jylian J. Optical properties and corrosion resistance of Ti2AlC, Ti3AlC 2 and Cr2AlC as candidates for concentrated solar power receivers. Solar Energy Materials and Solar Cells. 2023, 259, 112433.
  • Davis D., Shah A. F., Panigrahi B. P., Singh S. Effect of Cr2AlC nanolamelle addition on tribological properties of 5W‑30 engine oil. Applied Surface Science. 2019, 493, 1098–1105.
  • Yang S., Chen J., Chen P., Feng K., Li Q. Effect of Cr2AlC particle on the dispersion strengthening of CLF‑1 steel. Fusion Engineering and Design. 2022, 177, 113076.
  • Sokol M., Yang J., Keshavan H., Barsoum M. W. Bonding and oxidation protection of Ti2AlC and Cr2AlC for a Ni- based superalloy. Journal of the European Ceramic Society. 2019, 39, 878–882.
  • Mengis L., Ockay C., Laska N., Galetz M. G. Synthesis, oxidation resistance and mechanical properties of a Cr2AlC‑based MAX‑phase coating on TiAl. Intermetallics. 2023, 163, 108039.
  • Шабалин И. Л. Перспективы нанотехнологии и дизайна материалов на основе тугоплавких соединений. Известия вузов. Порошковая металлургия и функциональные покрытия, 2018, 4, 73–81. [Shabalin I. L. Prospects of nanotechnology and design of materials based on refractory compounds. News of universities. Powder metallurgy and functional coatings, 2018, 4, 73–81 (In Rus.)].
  • Akinola O., Chakraborty I., Celio H., Akinwande D., Incorvia J. A.C. Synthesis and characterization of Cr2C MXenes. Journal of Materials Research. 2021, 36, 1980–1989.
  • Yadav A., Dashora A., Patel N., Miotello A., Press M., Kothari D. C. Study of 2D MXene Cr2C material for hydrogen storage using density functional theory. Applied Surface Science. 2016, 389, 88–95.
  • Sun S., Liao C., Hafez A. M., Zhu H., Wu S. Two- dimensional MXenes for energy storage. Chemical Engineering Journal. 2018, 338, 27–45.
  • Cheng Y. W., Dai J. H., Zhang Y. M., Song Y. Transition method modification and carbon vacancy promoted Cr2(CO2) MXenes: a new opportunity for a highly active catalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A. 2018, 42, 20956–20965.
  • Zou X., Liu H., Hu H., Wu X., Han X., Kang J., Reddy K. M. A simple approach to synthesis Cr2CTx MXene for efficient hydrogen evolution reaction. Materials Today Energy. 2021, 20, 100688.
Еще
Статья обзорная