Систематическое исследование методов обнаружения опухолей головного мозга на основе искусственного интеллекта
Автор: Санджит Кумар, Урмила Пилания, Неха Нандал
Журнал: Информатика и автоматизация (Труды СПИИРАН).
Рубрика: Искусственный интеллект, инженерия данных и знаний
Статья в выпуске: Том 22 № 3, 2023 года.
Бесплатный доступ
Мозг считается одним из наиболее эффективных органов, контролирующих организм. Развитие технологий сделало возможным раннее и точное обнаружение опухолей головного мозга, что существенно влияет на их лечение. Применение искусственного интеллекта значительно возросло в области неврологии. В этом систематическом обзоре сравниваются последние методы глубокого обучения (DL), машинного обучения (ML) и гибридные методы для обнаружения рака мозга. В статье дается оценка 36 недавних статей, посвященных этим методам, с учетом наборов данных, методологии, используемых инструментов, достоинств и ограничений. Статьи содержат понятные графики и таблицы. Обнаружение опухолей головного мозга в значительной степени опирается на методы машинного обучения, такие как метод опорных векторов (SVM) и метод нечетких C-средних (FCM). Рекуррентные сверточные нейронные сети (RCNN), плотная сверточная нейронная сеть (DenseNet), сверточные нейронные сети (CNN), остаточная нейронная сеть (ResNet) и глубокие нейронные сети (DNN) — это методы DL, используемые для более эффективного обнаружения опухолей головного мозга. Методы DL и ML объединяются для разработки гибридных методов. Кроме того, приводится краткое описание различных этапов обработки изображений. Систематический обзор выявляет нерешенные проблемы и будущие цели для методов на основе DL и ML для обнаружения опухолей головного мозга. С помощью систематического обзора можно определить наиболее эффективный метод обнаружения опухолей головного мозга и использовать его для улучшения.
Обработка изображений, машинное обучение, глубокое обучение, гибридные методы
Короткий адрес: https://sciup.org/14127439
IDR: 14127439 | DOI: 10.15622/ia.22.3.3