Slow Invariant Manifold Analysis in a Mitotic Model of Frog Eggs via Flow Curvature Method

Автор: A. K. M. Nazimuddin, Md. Showkat Ali

Журнал: International Journal of Mathematical Sciences and Computing @ijmsc

Статья в выпуске: 4 vol.8, 2022 года.

Бесплатный доступ

A slow-fast dynamical systems can be investigated qualitatively and quantitatively in the study of nonlinear chaotic dynamical systems. Slow-fast autonomous dynamical systems exhibit a dichotomy of motion, which is alternately slow and quick, according to experiments. Some investigations show that slow-fast dynamical systems have slow manifolds, which is supported by theory. The goal of the proposed study is to show how differential geometry may be used to examine the slow manifold of the dynamical system known as the mitotic model of frog eggs. The algebraic equation of the flow curvature manifold is obtained using the flow curvature technique applied to the dynamical mitosis model. Using the Darboux invariance theorem, we then argue that this slow manifold equation is invariant with regard to the flow.

Еще

Mitotic Model, Darboux Theorem, Slow-Fast System, Differential Geometry, Flow Curvature Manifold

Короткий адрес: https://sciup.org/15019033

IDR: 15019033   |   DOI: 10.5815/ijmsc.2022.04.04

Список литературы Slow Invariant Manifold Analysis in a Mitotic Model of Frog Eggs via Flow Curvature Method

  • Nikolay Karabutov (2017). Adaptive Observers with Uncertainty in Loop Tuning for Linear Time-Varying Dynamical Systems, International Journal of Intelligent Systems and Applications, 9(4) :1-13.
  • Ruisong Ye, Huiqing Huang, Xiangbo Tan (2014). A Novel Image Encryption Scheme Based on Multi-orbit Hybrid of Discrete Dynamical System, I.J. Modern Education and Computer Science, 6(10) : 29-39.
  • Ping Sun (2011). Solid Launcher Dynamical Analysis and Autopilot Design, I.J. Image, Graphics and Signal Processing, 3(1) : 53-60.
  • Tikhonov, A.N. (1948). On the dependence of solutions of differential equations on a small parameter, Mat. Sbornik N. S., 31:575–586.
  • Andronov, A.A., Chaikin, S.E (1937). Plane Theory of Oscillators, I, Moscow.
  • Levinson, N., (1949). A second-order differential equation with singular solutions, Ann. Math, 50:127–153.
  • Fenichel, N. (1971). Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J, 21:193–225.
  • Fenichel, N. (1974). Asymptotic stability with rate conditions, Indiana Univ. Math. J, 23:1109–1137.
  • Fenichel, N. (1977). Asymptotic stability with rate conditions II, Indiana Univ. Math. J, 26:81–93.
  • Fenichel, N. (1979). Geometric singular perturbation theory for ordinary differential equations, J. Differ. Equ., 31: 53–98.
  • Ginoux, J.M.and Llibre, J. (2011). The flow curvature method applied to canard explosion, J. Phys. A Math. Theor., 44: 465203.
  • Ginoux, J.M. (2009). Differential geometry applied to dynamical systems, In: World Scientific Series on Nonlinear Science, Series A, 66, World Scientific, Singapore.
  • Ginoux, J.M. and Rossetto, B. (2006). Differential geometry and mechanics applications to chaotic dynamical systems, Int. J. Bifurc. Chaos, 4(16): 887–910.
  • Ginoux, J.M., Rossetto, B. and Chua, L.O. (2008). Slow invariant manifolds as curvature of the flow of dynamical systems, Int. J. Bifurc. Chaos, 11(18): 3409–3430.
  • Ginoux, J.M., Llibre, J. and Chua, L.O. (2013). Canards from Chua’s circuit, Int. J. Bifurc. Chaos, 23(4): 1330010.
  • Ginoux, J. M. (2014). The slow invariant manifold of the Lorenz–Krishnamurthy model, Qualitative theory of dynamical systems, 13(1): 19–37.
  • Ginoux, J. M., & Rossetto, B. (2014). Slow invariant manifold of heartbeat model, arXiv preprint arXiv:1408.4988.
  • Jin-hu, L., Zi-fan, Z. and Suo-chun, Z. (2003). Bifurcation analysis of a mitotic model of frog eggs. Applied Mathematics and Mechanics, 24(3): 284-297.
  • Novak B, Tyson J J. (1993). Numerical analysis of a comprehensive model of M-phase control in Xenopus oocyte extracts and intact embryos, Journal of Cell Science, 106(4) : 1153 - 1168.
  • Novak B, Tyson J J. (1993). Modeling the cell division cycle: M-phase trigger, osculations, and size control, Journal of Theoretical Biology, 165(1) : 101 - 134.
  • FENG Bei-ye, ZENG Xuan-wu. (2002). Qualitative analysis of a mitotic model of frog eggs, Acta Mathematicae Applicatae Sinica, 25(3) :460 - 468. (in Chinese)
  • Tyson, J. J., & Novak, B. (2015). Bistability, oscillations, and traveling waves in frog egg extracts, Bulletin of mathematical biology, 77(5): 796-816.
  • Borisuk, M T and Tyson, J J. (1998). Bifurcation analysis of a model of mitotic control in frog eggs, Journal of Theoretical Biology, 195(1) :69 - 85.
  • Murray, A. and Hunt T. (1993). The Cell Cycle. An Introduction. New York: W. H. Freeman Co.
Еще
Статья научная