Small satellites for sea surface sounding
Автор: Kartsan I.N., Zhukov A.O.
Журнал: Siberian Aerospace Journal @vestnik-sibsau-en
Рубрика: Aviation and spacecraft engineering
Статья в выпуске: 2 vol.23, 2022 года.
Бесплатный доступ
The paper presents a method of processing signals of radar sensing of the underlying surface using il-lumination from existing spacecraft (navigation, communication) and a constellation of small receiving spacecraft using synthetic aperture antennas. Methods and Results. Small spacecraft have many advantages over large satellites. Thus, they are rela-tively inexpensive to build, take minimal time from design to launch, can be easily modified to solve a particu-lar problem, and create less radio interference. The approach under consideration consists in redistribution of tasks to be solved between the constellation of satellites in orbit. Both regular high-orbit communication satellites and low-orbit satellite communication systems, as well as navigation satellites are represented as transmitter carriers (underlying surface illumination). These space systems use the necessary broadband sig-nal. Receivers of reflected signals are placed onboard small spacecrafts, and one of the tasks of the system is to perform research experiments, including on-line monitoring of fast-moving atmospheric cyclones. The work applies the method of sea surface radar imaging based on reflected signal models. The main results of the research are as follows: (1) possibility to use as a probing signal both a pulse and a broadband signal with a priori unknown modulation law, (2) acceptable resolution, (3) possibility to significantly reduce the system cost as compared to the existing space radars of sea surface survey. Conclusions. As a result of using a multi-position radar system, which uses small receiving antennas with synthetic aperture and sea surface illumination from operating spacecraft, it is possible to move to a qualitatively new level of solving problems of sea surface remote sensing with spatial resolution up to 1 meter, regardless of illumination and cloud cover presence.
Small spacecraft, receiving antennas with synthetic aperture, floodlight view mode, radar imaging of the sea surface
Короткий адрес: https://sciup.org/148329625
IDR: 148329625 | DOI: 10.31772/2712-8970-2022-23-2-262-272
Список литературы Small satellites for sea surface sounding
- Kartsan I. N., Efremova S. V., Khrapunova V. V., Tolstopiatov M. I. Choice of optimal multi-version software for a small satellite ground-based control and command complex. IOP Conference Series: Materials Science and Engineering. 2018, Vol. 450(2), P. 022015.
- Kartsan I. N., Efremova S. V. [Distributed control of university small spacecraft] Мaterialy V Mezhdunar. nauch. konf. “Aktual'nyye problemy aviatsii i kosmonavtiki” [Materials V Intern. Scientific. Conf “Topical Issues in Aeronautics and Astronautics”]. Krasnoyarsk, 2019. P. 47–48. (In Russ.).
- Kartsan I. N. [Ground control complex for small spacecraft]. Vestnik SibGAU. 2009, No. 3 (24), P. 89–92 (In Russ.).
- Satellite Hydrophysics. Ed. by M. I. Stern. Мoscow, Nauka Publ., 1983, 253 p.
- Ruffini G., Soulat F., Caparrini M., Germain O., Martin-Neira M. The eddy experiment: accurate GNSS-R ocean altimetry from low altitude aircraft. Geophys. Res. Lett. 2004, No. 31(2), P. 2306.
- Martin-Neira M., D’Addio S., Buck C., Floury N., Prieto-Cerdeira R. The PARIS ocean altime-ter in-orbit demonstrator. IEEE Trans. Geosci. Remote Sens. 2011, No. 49(6), P. 2209–2237.
- Neronsky L. B., Mikhailov V. F., Bragin I. V. Microwave equipment for remote sensing of the Earth surface and atmosphere. Radar with synthesized aperture antenna. Spb., SPbGUAP Publ., 1999, Part 2, 220 p.
- Klimenko N. N., Zanin K. A. New generation of spacecraft for maritime surveillance. Air and Space Sphere. 2019, No. 2, P. 72–82.
- Klimenko N. N. Modern low-orbit spacecraft for geolocation and identification of radio emis-sion sources. Air and Space Sphere. 2018, No. 2, P. 48–57.
- Tyapkin V. N., Kartsan I. N., Dmitriev D. D., Efremova S. V. Algorithms for adaptive process-ing of signals in a flat phased antenna array. International Siberian Conference on Controland Com-munications (29–30 June 2017). Astana, Kazakhstan, 2017. P. 7998452.
- Kartsan I. N., Goncharov A. E., Zelenkov P. V., Kovalev I. V., Fateev Y. L., Tyapkin V. N., Dmitriev D. D. Applying filtering for determining the angular orientation of spinning objects during inter-ference. IOP Conference Series: Materials Science and Engineering. 2016, No. 155 (1), P. 012020.
- Turuk V. E., Verba V. S. Golovanova, M. V. SAR Strizh for small spacecraft Komandor-E. Modern problems of Earth remote sensing from space. 2017, Vol. 14, No. 5, P. 69–83.
- Turuk V., Verba V., Golovanova M., Neronskiy L., Zaitsev S., Tolstov E. Russian Spaceborne Synthetic Aper-ture Radar “Strizh” for Light Satellites of “Condor-E” type. Proc. EUSAR’2016. Hamburg, Germany. 2016. P. 947–952.
- Afanasyev I. Zorky “Condor”. Novosti kosmonavtiki. 2013. № 8. pp. 46-50.
- Ksendzuk A. V., Fateyev V. F., Popov S. A. Method of signal processing in space multiposi-tion radar systems with synthesis of antenna aperture. Izvestiya vysokikh izuchenii “Instrument-making” 2009, No. 4(52), P. 28–34.
- Falkofich S. E., Volosyuk V. K., Gorbunenko O. A. Radiotechnical systems of remote sensing. Kharkov, KAI Publ., 2002, 157 p.
- Ksendzuk A. V., Volosyuk V. K., Sologub N. S. Modeling SAR primary and secondary pro-cessing algorithms. Estimating quality of the processing techniques. 5-th European Conference on Synthetic Aperture Radar EUSAR 2004. Ulm, Germany. 2004. Vol. 2, P. 1013–1016.
- Ksendzuk A. V., Gerasimov P. A. Inverse passive synthetic aperture radar. Radio industry (Russia), 2016, Vol. 26(1), P. 33–37. (In Russ.).
- Zavorotny V., Masters D., Gasiewski A., Bartram B., Katzberg S., Axelrad P., Zamora R. Sea-sonal polarimetric measurements of soil moisture using tower-based GPS bistatic radar. IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium (21-25 July 2003). Toulouse, France, 2003. vol.2, pp. 781–783.
- Lowe S. T., Kroger P. M., Franklin G. W., LaBrecque J. L., Lerma J., Lough M. F., Marcin M.R., Spitzmesser D.J., Young L. E. A delay Doppler-mapping receiver system for GPS-reflection remote sensing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2003, Vol. 40(55), P. 1150–1163.
- Zavorotny V., Larson K.M., Braun J., Small E. E., Gutmann E., Bilich A. A physical model for GPS multipath caused by land reflections: Toward bare soil moisture retrievals. IEEE Journal of Se-lected Topics in Applied Earth Observations and Remote Sensing,. 2010,Vol. 3(1), P. 100–110.
- Gutmann E., Larson K. M., Williams M., Nievinski F. G., Zavorotny V. Snow measurement by GPS interferometric reflectometry: An evaluation at niwot ridge, Colorado. Hydrol. Process. 2011, Vol. 26(19), P. 2951–2961.
- Voronovich A.G. Non-local small-slope approximation for wave scattering from rough surfac-es. Waves in Random Media. 1996, Vol. 6(2), P. 151–167.
- Voronovich A.G. Small-slope approximation for electro-magnetic wave scattering at a rough interface of two dielectric half-spaces. Waves Random Media, 1994. Vol. 4(3), pp. 337–367.
- Soiguine A. Scattering of geometric algebra wave functions and collapse in measurements. Journal of Applied Mathematics and Physics, 2020. Vol. 8, pp. 1838-1844.
- Johnson J.T. A study of ocean-like surface thermal emission and reflection using Voronovich’s small slope approximation. IEEE Trans. Geosci. Remote Sensing, 2005. Vol. 43(2), pp. 306–314.
- Voronovich A.G., Zavorotny V.U. Ocean-scattered polarized bistatic radar signals modeled with small-slope approximation. IEEE Int. Geoscience Remote Sensing Symp., 2012. pp. 3415–3418.
- Zavorotny V. U., Voronovich A. G. Bistatic GPS signal reflections at various polarizations from rough land surface with moisture content. IEEE Int. Geoscience Remote Sensing Symp. 2000, Vol. 7, P. 2852–2854.
- Pereslegin S. V., Levchenko D. G., Karpov I. O. The vibration wave on the water surface: par-ametric excitation and radar observation. Fundamentalnaya i Prikladnaya Gidrofizika. 2021, Vol. 14(2), P. 39–53. Doi:10.7868/S2073667321020040.
- Pereslegin S. V., Karpov I. O., Khalikov Z. A., Ermakov R. V., Mussiniants T. G. The forming of sea surface velocity images from stationary, airborne and spaceborne platforms. Fundamentalnaya i Prikladnaya Gidrofizika. 2019, Vol. 12(1), P. 21–29. Doi:10.7868/S2073667319010039.