Содержание макро- и микроэлементов в конском волосе как характеристика элементного статуса лошадей заводских и локальных пород в разных регионах России

Автор: Калашников В.В., Багиров В.А., Зайцев А.М., Калинкова Л.В., Калашникова Т.В., Блохина Н.В., Атрощенко М.М., Завьялов О.А., Фролов А.Н., Мирошников С.А.

Журнал: Сельскохозяйственная биология @agrobiology

Рубрика: Экофизиология и адаптация

Статья в выпуске: 6 т.52, 2017 года.

Бесплатный доступ

Оптимальный баланс химических элементов исключительно важен для здоровья животных, в особенности скаковых и рысистых лошадей, у которых физические нагрузки могут находиться на грани физиологических возможностей организма. Кроме того, при традиционном табунном коневодстве условия, в которых находятся животные (например, при круглосуточном зимнем содержании на воздухе в северной части Якутии), могут оказаться экстремальными. Элементный статус лошади - важнейший маркер ее физиологического благополучия, жизнеспособности и продуктивности, а также готовности к перегрузкам. Нашей целью было выявление особенностей элементного статуса лошадей ( Equus ferus caballus ) из разнородных генетических групп, выращиваемых и используемых в неодинаковых технологических и природных условиях. Всего исследовали 198 образцов волоса от лошадей культурных (заводских) пород - русской рысистой, чистокровной верховой (английской), чистокровной арабской, чистокровной ахалтекинской, а также локальных (аборигенных) пород - башкирской, кабардинской, тувинской, якутской, мезенской, вятской. Лошади содержались по конюшенной и табунной технологии в 11 регионах Российской Федерации. В образцах определяли содержание 5 макроэлементов (кальций, калий, магний, натрий, фосфор) и 8 эссенциальных микроэлементов (кобальт, хром, медь, железо, йод, марганец, селен, цинк). Генетическую детерминацию содержания макро- и микроэлементов в волосе анализировали на лошадях чистокровной верховой (английской), чистокровной арабской и чистокровной ахалтекинской пород (Ставропольский край). Генетический профиль лошадей определяли у лошадей трех чистокровных пород (верховая английская, арабская, ахалтекинская) по 16 аутосомным микросателлитным локусам, оценивая связь степени гомозиготности по ним в каждой породе на фоне идентичных природно-климатических условий и единой технологии конюшенного содержания. Показаны достоверные различия между исследованными группами лошадей по накоплению в волосе химических элементов с учетом принадлежности животных к разным генетическим группам (породам), а также ареала, способа и технологии разведения и использования. В Республике Саха (Якутия) животные испытывали дефицит по 11 из 13 исследованных химических элементов в сравнении со средними показателями по всем обследованным регионам. Второе место по дефициту макро- и микроэлементов делили республики Башкирия и Кабардино-Балкария, третье - Республика Калмыкия и Ставропольский край. Далее следовали Архангельская, Брянская и Липецкая области. Самыми благополучными оказались Республика Тыва и Краснодарский край, где регистрировали профицит соответственно по 12 и 11 элементам, причем по отдельным из них в размере до 220 % к среднему показателю по стране. Установлено преимущество конюшенной технологии содержания поголовья, которая обеспечивает лучший баланс химических элементов в организме за счет нормирования рациона по комплексу питательных веществ. Элементный состав конского волоса имел выраженную связь с принадлежностью к той или иной генетически однородной группе. Выявлено соответствие между вектором повышения количества макро- и микроэлементов в волосе и трендом роста гетерозиготности по микросаттелитным локусам среди трех чистокровных пород. Самая благополучная по балансу элементов ахалтекинская порода выделялась большей гетерозиготностью. Создание банка данных о микронутриентном статусе разных пород и групп российских лошадей позволит лучше изучить факторы, детерминирующие обменные процессы, для разработки инновационных технологий в коневодстве.

Еще

Лошади, рысистые и скаковые породы, заводские породы, аборигенные породы, микроэлементы, микроэлементный состав волоса, ареал, технологии содержания, микросателлитная днк, генетические анализ

Короткий адрес: https://sciup.org/142214103

IDR: 142214103   |   DOI: 10.15389/agrobiology.2017.6.1234rus

Список литературы Содержание макро- и микроэлементов в конском волосе как характеристика элементного статуса лошадей заводских и локальных пород в разных регионах России

  • Агаджанян Н.А., Скальный А.В. Химические элементы в среде обитания и экологический портрет человека. М., 2001.
  • Сальникова Е.В., Детков В.Ю., Скальный А.В. Аккумуляция эссенциальных и условно эссенциальных микроэлементов в волосах жителей России. Микроэлементы в медицине, 2016, 17(2): 24-31.
  • Самохин В.Т. Профилактика нарушений обмена микроэлементов у животных. Воронеж, 2003.
  • Богомольцев А.В., Коваленок Ю.К. Оптимизация пробоподготовки терминальных волос крупного рогатого скота для количественного определения минеральных веществ. Ученые записки Витебской государственной академии ветеринарной медицины, 2011, 47(1): 174-177.
  • Суровцев В.Н., Никулина Ю.Н., Саяпин А.В. Реализация инвестиционных проектов в молочном животноводстве: эффективность модульного подхода. Молочная промышленность, 2015, 9: 74-76.
  • Скальный А.В. Связь элементного статуса населения Центрального федерального округа с заболеваемостью. Ч. 1. Токсичные химические элементы: Al, As, Be, Cd, Hg, Pb, Sn. Микроэлементы в медицине, 2011, 12(1-2): 23-26.
  • Скальный А.В. Микроэлементозы человека (диагностика и лечение): практическое руководство. М., 2004.
  • Скальный А.В., Рудаков И.А. Биоэлементы в медицине. М., 2004.
  • Dobrzanski Z., Jankowska D., Dobicki W., Kupczynski R. The influence of different factors on the concentration of elements in hair of horses. Proc. 12th ISAH Congress on Animal Hygiene. V. 2. Animals and environment. Warsaw, Poland, 2005: 450-453.
  • Скальный А.В. Референтные значения концентрации химических элементов в волосах, полученные методом ИСП-АЭС. Микроэлементы в медицине, 2003, 1: 55-56.
  • Калашников В.В., Храброва Л.А., Зайцев А.М., Зайцева М.А., Калинкова А.А. Полиморфизм микросателлитной ДНК у лошадей заводских и локальных пород. Сельскохозяйственная биология, 2011, 2: 41-45.
  • Pozebon D., Scheffler G.L., Dressler V.L. Elemental hair analysis: A review of procedures and applications. Anal. Chim. Acta, 2017, 992: 1-23 ( ) DOI: 10.1016/j.aca.2017.09.017
  • Prejac J., Višnjević V., Skalny A.A., Grabeklis A.R., Mimica N., Momčilović B. Hair for a long-term biological indicator tissue for assessing the strontium nutritional status of men and women. J. Trace Elem. Med. Bio., 2017, 42: 11-17 ( ) DOI: 10.1016/j.jtemb.2017.02.015
  • Ling Y.H., Ma Y.H., Guan W.J., Cheng Y.J., Wang Y.P., Han J.L., Mang L., Zhao Q.J., He X.H., Pu Y.B., Fu B.L. Evaluation of the genetic diversity and population structure of Chinese indigenous horse breeds using 27 microsatellite loci. Anim. Genet., 2011, 42(1): 56-65 ( ) DOI: 10.1111/j.1365-2052.2010.02067.x
  • Гольдфейн М.Д., Адаев О.Н., Тимуш Л.Г., Заиков Г.Е., Ярошевская Х.М. Роль химических элементов и их соединений в природе и в процессах жизнедеятельности человека. Ч. 1. Химические вещества в экологии, микроэлементозы и общие вопросы безопасности питания. Вестник технологического университета, 2015, 18(16): 298.
  • Žáková N., Száková J., Tremlová J., Najmanová J., Tlustoš P. The soil-plant-feed transport of selenium and other essential micronutrients in diet of sport and recreational horses at two different locations. J. Anim. Feed Sci., 2016, 25: 317-325 ( ) DOI: 10.22358/jafs/67805/2016
  • Davis T.Z., Stegelmeier B.L., Hall J.O. Analysis in horse hair as a means of evaluating selenium toxicoses and long-term exposures. J. Agr. Food Chem., 2014, 62(30): 7393-7397 ( ) DOI: 10.1021/jf500861p
  • Мирошников С.А., Харламов А.В., Завьялов О.А., Фролов А.Н. Региональные особенности элементного состава шерсти крупного рогатого скота (результаты пилотного исследования). Вестник мясного скотоводства, 2015, 2(90): 7-10.
  • Langeland A.L., Hardin R.D., Neitzel R.L. Mercury levels in human hair and farmed fish near artisanaland small-scale gold mining communities in the Madre de Dios River Basin, Peru. Int. J. Environ. Res. Public Health, 2017, 14(3): 302 ( ) DOI: 10.3390/ijerph14030302
  • Długaszek M., Kopczyński K. Correlations between elements in the fur of wild animals. Bull. Environ. Contam. Tox., 2014, 93(1): 25-30 ( ) DOI: 10.1007/s00128-014-1260-3
  • Brits M., Gorst-Allman P., Rohwer E.R., De Vos J., de Boer J., Weiss J.M. Comprehensive two-dimensional gas chromatography coupled to high resolution time-of-flight mass spectrometry for screening of organohalogenated compounds in cat hair. J. Chromatogr. A, 2017, pii: S0021-9673(17)31236-0 (in press) ( ) DOI: 10.1016/j.chroma.2017.08.055
  • Zargar S.M., Mahajan R., Farhat S., Muslima N., Mir R.A., Momina N., Salgotra R.K., Mallick S.A. Understanding the role of iron and zinc in animals and crop plants from genomics perspective. Current Trends in Biotechnology and Pharmacy, 2015, 9(2): 181-196.
  • Zeng H. Selenium as an essential micronutrient: roles in cell cycle and apoptosis. Molecules, 2009, 14(3): 1263-1278 ( ) DOI: 10.3390/molecules14031263
  • Hailer M.K., Peck C.P., Calhoun M.W., West R.F., James K.J., Siciliano S.D. Assessing human metal accumulations in an urban superfund site. Environ. Toxicol. Pharmacol., 2017, 54: 112-119 ( ) DOI: 10.1016/j.etap.2017.06.001
  • Maduray K., Moodley J., Soobramoney C., Moodley R., Naicker T. Elemental analysis of serum and hair from pre-eclamptic South African women. J. Trace Elem. Med. Bio., 2017, 43: 180-186 ( ) DOI: 10.1016/j.jtemb.2017.03.004
  • Presley T.D., Duncan A.V., Jeffers A.B., Fakayode S.O. The variation of macro-and micro-minerals of tissues in diabetic and non-diabetic rats. J. Trace Elem. Med. Bio., 2017, 39: 108-115 ( ) DOI: 10.1016/j.jtemb.2016.08.009
Еще
Статья научная