Soil microbiome of plaggic anthrosol and calcic cryosols in Central Yakutia

Автор: Polyakov V.I., Petrov A.A., Abakumov E.V., Kimeklis A.K., Gladkov G.V., Andronov E.E.

Журнал: Бюллетень Почвенного института им. В.В. Докучаева @byulleten-esoil

Рубрика: Статьи

Статья в выпуске: 119, 2024 года.

Бесплатный доступ

Soil microbiome makes a significant contribution to the implementation of ecosystem services, which are necessary for the sustainable functioning of ecosystems. Soils of central Yakutia develop under dynamic physical and chemical conditions (long-term freezing/thawing processes, redistribution of nutrients), which ensures the formation of a specific microbial community in natural and anthropogenically transformed areas. The object of the study was the natural, fallow, and agricultural soils of central Yakutia. The method of high-throughput sequencing of 16S rRNA gene fragment on Illumina MiSEQ sequencer was used to analyze the microbial community. As a result, in fallow lands a decrease in nutrients was revealed if compared to the lands involved in agricultural turnover. Based on the composition of the microbiome it was observed that the most common phyla are Acidobacteria, Actinobacteria, Verrucomicrobiota, Pseudomonadota (Alphaproteobacteria, Gammaproteobacteria), Bacterioidota, Chloroflexi, Planctomycetota. The presence of a core set of microorganisms for the studied soils was recorded, up to 17.8% of phylotypes are unique and up to 25.7% are common to fallow lands and background plots. Microbial communities vary depending on geographical locations and on types of natural resource use. The most distinct microbial communities are formed in hydromorphic soils with the development of gley processes, as well as in agricultural soils.

Еще

16s amplicons, soil biodiversity, high-throughput sequencing, permafrost affected soils

Короткий адрес: https://sciup.org/143183306

IDR: 143183306   |   DOI: 10.19047/0136-1694-2024-119-6-29

Список литературы Soil microbiome of plaggic anthrosol and calcic cryosols in Central Yakutia

  • Abakumov E., Kimeklis A., Gladkov G., Andronov E., Morgun E., Microbiomes of natural and abandoned agricultural soils of the Central part of Yamal region, IOP Conf. Series: Earth and Environmental Science, No. 941, 2021a, ID 012029, https://doi.org/10.1088/1755-1315/941/1/012029.
  • Abakumov E., Zverev A., Kichko A., Kimeklis A., Andronov E., Soil microbiome of different-aged stages of self-restoration of ecosystems on the mining heaps of limestone quarry (Elizavetino, Leningrad region), Open Agriculture, 2021b, Vol. 6, No. 1, pp. 57-66, https://doi.org/10.1515/opag-2020-0207.
  • Ahmad F., Saeed Q., Shah S.M.U., Gondal M.A., Mumtaz S., Chapter 11 - Environmental sustainability: Challenges and approaches, In: Natural Resources Conservation and Advances for Sustainability, Elsevier, 2022, pp. 243-270, https://doi.org/10.1016/B978-0-12-822976-7.00019-3.
  • Bates S.T., Berg-Lyons D., Caporaso J.G., Walters W.A., Knight R., Fierer N., Examining the global distribution of dominant archaeal populations in soil, ISME Journal, 2010, No. 5, pp. 908-917, https://doi.org/10.1038/ismej.2010.171.
  • Callahan B.J., McMurdie P.J., Rosen M.J., Han A.W., Johnson A.J.A., Holmes S.P., DADA2: High-Resolution Sample Inference from Illumina Amplicon Data, Nat. Methods, 2016, No. 13, pp. 581-583, https://doi.org/10.1038/nmeth.3869.
  • Chebykina E., Polyakov V., Abakumov E., Petrov A., Wildfire Effects on Cryosols in Central Yakutia Region, Russia, Atmosphere, 2022, No. 13, ID 1889, https://doi.org/10.3390/atmos13111889.
  • Desyatkin R., Filippov N., Desyatkin A., Konyushkov D., Goryachkin S., Degradation of Arable Soils in Central Yakutia: Negative Consequences of Global Warming for Yedoma Landscapes, Front. Earth Sci., 2021 No. 9, ID 683730, https://doi.org/10.3389/feart.2021.683730.
  • Desyatkin R.V., Nikolaeva M.Ch., Ivanova A.Z., Desyatkin A.R., Okoneshnikova M.V., Filippov N.V., The impact of 2021 large forest fires on vegetation and soils, on the territory of distribution of light soil-forming rocks in Central Yakutia, Dokuchaev Soil Bulletin, 2024, Vol. 118, pp. 231-275, https://doi.org/10.19047/0136-1694-2024-118-231-275.
  • Dubey A., Malla M.A., Khan F., Soil microbiome: a key player for conservation of soil health under changing climate, Biodivers Conserv, 2019, No. 28, pp. 2405-2429, https://doi.org/10.1007/s10531-019-01760-5.
  • Food and Agriculture Organization of The United Nation. World reference base for soil resources 2014. Rome, Italy, 2015, 203 p.
  • Food and agriculture organization of the United Nations. Guidelines for soil description. Rome, Italy, 2006, 98 p.
  • Ivanova E., Gladkov G., Kimeklis A., Kichko A., Karpova D., Andronov E. Abakumov E., The structure of the prokaryotic communities of the initial stages of soil formation in Antarctic Peninsula, IOP Conf. Series: Earth and Environmental Science, 2021, No. 862, ID 012056, https://doi.org/10.1088/1755-1315/862/1/012056.
  • Ivanova T.I., Kuz’mina N.P., Savvinov D.D., Microbial cenoses of alas soils on the Lena-Amga interfluve in central Yakutia, Eurasian Soil Science, 2013, Vol. 46, No. 4, pp. 417-430, https://doi.org/10.1134/S1064229313040054.
  • Ivanova T.I., Kuzmina N.P., Savvinov D.D., Microbial communities of frozen soils of the Tuimaada valley in Central Sakha, Biology Bulletin, 2014, Vol. 41, No. 6, pp. 500-511, https://doi.org/10.1134/S106235901406003X.
  • Jansson, J.K., Hofmockel, K.S., Soil microbiomes and climate change. Nature Reviews Microbiology, 2019, No. 18, pp. 35-46, https://doi.org/10.1038/s41579-019-0265-7.
  • Kuzmina N.P., Ermolaeva S.V., Chevychelov A.P., Microbiological activity of permafrost forest soils in Central Yakutia, IOP Conf. Series: Earth and Environmental Science, 2021, No. 862, ID 012057, https://doi.org/10.1088/1755-1315/862/1/012057.
  • Langfelder P., Horvath S., WGCNA: An R Package for Weighted Correlation Network Analysis, BMC Bioinformatics, 2008, No. 9, ID 559, https://doi.org/10.1186/1471-2105-9-559.
  • Lin Q., Baldrian P., Li L., Novotny V., Heděnec P., Kukla J., Umari R., Meszárošová L., Frouz J., Dynamics of Soil Bacterial and Fungal Communities During the Secondary Succession Following Swidden Agriculture IN Lowland Forests, Front. Microbiol., 2021, No. 12, ID 676251, https://doi.org/10.3389/fmicb.2021.676251.
  • Love M., Andres S., DESeq2 data package, 2017.
  • McMurdie P.J., Holmes S., Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data, PLOS ONE, 2013, No. 8, ID e61217, https://doi.org/10.1371/journal.pone.0061217.
  • Mitin S.G., Sysoev G.V., Starostin I.A., Eshchin A.V., Technical and technological support for the involvement of fallow lands in agriculture, Dokuchaev Soil Bulletin, 2024, Vol. 118, pp. 276-308, https://doi.org/10.19047/0136-1694-2024-118-276-308.
  • Nicol GW, Tscherko D, Embley TM, Prosser JI., Primary succession of soil Crenarchaeota across a receding glacier foreland, Environ Microbiol., 2005, Vol. 7(3), pp. 337-347, https://doi.org/10.1111/j.1462-2920.2005.00698.x.
  • Okoneshnikova M.V., Gumusnoye sostoyaniye merzlotnykh poymennykh pochv doliny sredney Leny (Humus state of permafrost floodplain soils of the Middle Lena valley), Nauka i obrazovaniye, 2015, No. 3(79), pp. 94-97.
  • Okoneshnikova M.V., Ivanova A.Z., Pochvy i tekhnogennyye poverkhnostnyye obrazovaniya odnoy iz promyshlennykh baz goroda Yakutska (Soils and technogenic surface formations of one of the industrial bases of the city of Yakutsk), Bulletin of the North-Eastern Federal University. M.K. Ammosov, 2020, No. 6(80), pp. 5-19.
  • Polyakov V., Petrov A., Abakumov E., Micromorphological Characteristics of Fallow, Pyrogenic, Arable Soils of Central Part of Yakutia, Soil Systems, 2022, No. 6, ID 68, https://doi.org/10.3390/soilsystems6030068.
  • Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J., Glöckner F.O., The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools, Nucleic Acids Research, 2013, No. 41, pp. 590-596, https://doi.org/10.1093/nar/gks1219.
  • Santos L.F., Olivares F.L., Plant microbiome structure and benefits for sustainable agriculture, Current Plant Biology, 2021, No. 26, ID 100198, https://doi.org/10.1016/j.cpb.2021.100198.
  • Suman J., Rakshit A., Ogireddy S.D., Singh S., Gupta C., Chandrakala J., Microbiome as a Key Player in Sustainable Agriculture and Human Health, Front. Soil Sci., 2022, No. 2, ID 821589, https://doi.org/10.3389/fsoil.2022.821589.
  • Zverev A., Kimeklis A., Kichko A., Microbial features of mature and abandoned soils in refractory clay deposits, BMC Microbiol, 2022, No. 22, ID 237, https://doi.org/10.1186/s12866-022-02634-7.
Еще
Статья научная