Solar thermal propulsion systems with various high-temperature power sources

Автор: Finogenov S. L., Kolomentsev A. I.

Журнал: Siberian Aerospace Journal @vestnik-sibsau-en

Рубрика: Aviation and spacecraft engineering

Статья в выпуске: 2 vol.20, 2019 года.

Бесплатный доступ

The paper provides an overview of space thermal propulsion (STP) systems using concentrated solar energy as the main source of power. The paper considers solar thermal rocket engines of various configurations including those with afterburning of hydrogen heated in the “concentrator – absorber” system (CAS) with various oxidizers. Together with hydrogen the oxidizers form high-energy fuel compositions with a high value of ratio of components mass flow-rates which allows reducing the dimension of the CAS. The extreme dependences of the engine thrust on the specific impulse are shown for various values of the hydrogen heating temperature and the oxidizer-to-fuel ratio. The coefficients of the regression dependencies for the efficiency of a two-stage absorber and an absorber with the maximum non-isothermal heating having the highest possible energy efficiency are presented. The algorithms for calculating the main design parameters of the STP system as a part of a spacecraft (SC) are given, taking into account the ballistic parameters of the multi-turn transfer trajectory with multiple active segments applied to the STP systems having an energy-efficient non-isothermal CAS. The engine configurations with thermal heat accumulation and possible afterburning of heated hydrogen are also considered. Thermal accumulation allows accumulating energy in the solar-absorber during passive movement in the illuminated portions of the transfer orbits regardless of the lighting conditions of the apsidal orbit portions where the engine is turned on. Suitable heat-accumulating phase transition materials (HAM) such as the eutectic alloy of boron and silicon as well as refractory beryllium oxide are selected for different phases of the interorbital transfer to the geostationary Earth orbit (GEO). The main characteristics of different configurations of the STP systems in the problem of placing a spacecraft (SC) into high-energy GEO orbits are shown. A model of the SCSTP system operation is given taking into account ballistic parameters and the possibility of accumulating thermal energy. It is shown that the oxidizer-to-fuel ratio in STP systems with thermal energy storage (TES) increases with the decrease of the interorbital transfer time. The STP configurations with a two-stage TES showing a large energy-mass efficiency at moderate values of the solar concentrator accuracy parameter are considered.

Еще

Solar thermal propulsion, solar high-temperature heat source, concentrator-absorber system, thermal energy storage, hydrogen afterburning, ballistic efficiency

Короткий адрес: https://sciup.org/148321685

IDR: 148321685   |   DOI: 10.31772/2587-6066-2019-20-2-251-265

Список литературы Solar thermal propulsion systems with various high-temperature power sources

  • Wassom S. R., Lester D. M., Farmer G., Holmes M. Solar Thermal Propulsion IHPRPT Demonstration Program Status. 37th Joint Propulsion Conference and Exhibit. Salt Lake City, UT, USA. July 08–11, 2001. AIAA Paper, 2001, No. 2001–3735.
  • Finogenov S. L., Kolomentsev A. I. [Solar thermal propulsion with beryllium oxide latent fusion thermal energy storage and hydrogen after-burning]. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. 2018, Vol. 25, No. 3, P. 107–115 (In Russ.).
  • Finogenov S. L, Kudrin O. I., Nikolenko V. V. Solar Thermal Propulsion with High-Efficient “Absorber-Thermal Storage” System. IAF Paper 1997, No S.06.05. 48th International Astronautical Congress, October 6-10, 1997, Turin, Italy.
  • Gilpin M. R, Scharfe D. B., Young M. P., Webb R. Experimental Investigation of Latent Heat Thermal Energy Storage for Bi-Modal Solar Thermal Propulsion. 12th International Energy Conversion Engineering Conference. Cleveland, OH, USA. July 28–30, 2014. AIAA Paper, 2014. № 2014–3832. Available at: https://arc.aiaa.org/doi/10.2514/6.2014-3832.
  • Koroteev A. S. et al. Kick Stages with Solar Heat Propulsion Systems for Increase of Middle-Class Soyuz Launchers Competitiveness. Proc. of the 6th International Symposium on Propulsion for Space Transportation: Propulsion for Space Transportation of the XXIst Century Versailles, France. May 2002.
  • Leenders H. C. M., Zandbergen B. T. C. Development of a solar thermal thrusters system. 59th IAC Congress, Glasgow, Scotland, 2008. Paper IAC-08-D1.1.01.
  • Kudrin O. I. Solnechnye vysokotemperaturnye kosmicheskie energodvigatel’nye ustanovki [Solar hightemperature space power plants]. Moscow, Mashinostroenie Publ., 1987. 247 p.
  • Fedik I. I., Popov E. B. [Power-propulsion plant based on solar thermal storage] Sbornik dokladov III Mezhdunarodnogo soveshchaniya po problemam energoakkumulirovaniya i ekologii v mashinostroenii, energetike i na transporte [Proc. III Int. Conference on problems of energy storage and ecology in mechanical engineering, energetic and transport]. Moscow, IMASH RAS, 2002. P. 282–292 (In Russ.).
  • Finogenov S. L., Kolomentsev A. I. [About choice of scheme and parameters of solar thermal propulsion]. Aerospace MAI Journal. 2017, Vol. 24, No. 1, P. 63–75 (In Russ.).
  • Safranovich V. F., Emdin L. M. Marshevye dvigeteli kosmicheskikh apparatov. Vybor tipa i parametrov [Sustainer engines for space vehicles. Choice of type and parameters]. Moscow, Mashinostroenie Publ., 1980, 240 p.
  • Finogenov S. L., Kolomentsev A. I. [Parameters selection of solar thermal rocket engine under flight time limitation]. Aerospace MAI Journal. 2016, Vol. 23, No. 3, P. 58–68 (In Russ.).
  • Grilihes V. A., Matveev V. M., Poluehktov V. P. Solnechnye vysokotemperaturnye istochniki tepla dlya kosmicheskikh apparatov [Solar high-temperature heat sources for space vehicles]. Moscow, Mashinostroenie Publ., 1975, 248 p.
  • Finogenov S. L., Kolomentsev A. I. [Nonisothermal Concentrator-Absorber System Performances for Solar Thermal Propulsion]. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. 2017, No. 2, P. 66–83 (In Russ.). DOI: 10.18698/0236-3941-2017-2-66-83.
  • Finogenov S. L., Kolomentsev A. I., Nazarov V. P. [Solar thermal propulsion with different types of „concentrator-absorber” system]. Vestnik SibGAU. 2016, Vol. 17, No. 3, P. 738–747 (In Russ.).
  • Finogenov S. L., Kolomentsev A. I., Kudrin O. I. [Use of different oxidizers for afterburning of hydrogen heated in rocket engine by solar energy]. Vestnik SibGAU. 2015, Vol. 16, No. 3, P. 680–689 (In Russ.).
  • Konstantinov M. S., Min Thein [Optimisation of spacecraft injection trajectory into GEO for transportation system having specific impulse of 600-900 sec]. Trudy MAI. 2017, No. 95 (In Russ.). Available at: http://trudymai.ru/published.php?ID=84516.
  • Finogenov S. L., Kolomentsev A. I., Konstantinov M. S. [Performances of spacecraft with solar thermal propulsion]. Vestnik KGTU im. A. N. Tupoleva. 2017, No. 2 (74), P. 62–69 (In Russ.).
  • Finogenov S. L. [Choice of performances of solar thermal propulsion in the task of optimal injection into GEO]. Vestnik KGTU im. A. N. Tupoleva. 2018, No. 1 (75), P. 74–79 (In Russ.).
  • Finogenov S. L., Kolomentsev A. I. [The choice of heat-accumulating materials for solar thermal propulsion]. Vestnik SibGAU. 2016, Vol. 17, No. 1, P. 161–169 (In Russ.).
  • Finogenov S. L. [Conception of solar thermal propulsion with latent heat thermal energy storage and afterburning of hydrogen with fluorine]. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. 2018, No. 3 (120), P. 44–63 (In Russ.). DOI: 10.18698/0236-3941-2018-3-44-63.
  • Levenberg V. D., Tkach M. P., Gol’strem V. A. Accumulirovanie tepla [Heat accumulating]. Kiev, Tehnika Publ., 1991, 112 p.
  • Finogenov S. L., Kolomentsev A. I. [Performances of solar thermal propulsion with thermal energy storage and hydrogen afterburning]. Vestn. Mosk. Gos. Tekh. Univ. im. N. E. Baumana, Mashinostr. 2018, No. 7 (121), P. 55–70 (In Russ.). DOI: 10.18698/0236-3941-2018-3-55-70.
Еще
Статья научная