Сорбция фульвокислоты на подфракциях ила, выделенных из минеральных горизонтов торфянисто-подзолисто-глееватой почвы

Автор: Колчанова К.А., Толпешта И.И., Изосимова Ю.Г.

Журнал: Бюллетень Почвенного института им. В.В. Докучаева @byulleten-esoil

Рубрика: Спецвыпуск по результатам молодежной конференции

Статья в выпуске: S1, 2024 года.

Бесплатный доступ

Изучение взаимодействий органического вещества с различными по размеру и составу минералогическими фракциями почвы способствует созданию прогнозных моделей по закреплению органического углерода в почвах и его устойчивости к биодеградации. В работе изучали сорбцию фульвокислоты (ФК), полученной из горизонта Н торфянисто-подзолисто-глееватой почвы на подфракциях ила, выделенных из горизонтов ELG и Ecng той же почвы: 0-0.2 мкм (I), 0.2-0.06 мкм (II), 0.06-0.02 мкм (III) и

Сорбция, фульвокислота (фк), подфракции ила, минералогия

Короткий адрес: https://sciup.org/143183582

IDR: 143183582   |   DOI: 10.19047/0136-1694-2024-SPYC-37-72

Список литературы Сорбция фульвокислоты на подфракциях ила, выделенных из минеральных горизонтов торфянисто-подзолисто-глееватой почвы

  • Айдинян Р.Х. Извлечение ила из почв: краткая инструкция. Методические указания. 1960.
  • Марри Р., Греннер Д., Мейес П., Родуэлл В. Биохимия человека. Т. 1. М.: Мир, 1993. 384 с.
  • Страйер Л. Биохимия. Т. 1. М.: Мир, 1984. 232 с.
  • Ahmat A.M., Thiebault T., Guégan R. Phenolic acids interactions with clay minerals: A spotlight on the adsorption mechanisms of Gallic Acid onto montmorillonite // Applied Clay Science. 2019. Vol. 180. 105188.
  • Avena M.J., Vermeer A.W.P., Koopal L.K. Volume and structure of humic acids studied by viscometry pH and electrolyte concentration effects // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1999. Vol. 151. P. 213-224.
  • Avneri‐Katz S., Young R.B., McKenna A.M., Chen H., Corilo Y.E., Polubesova T., Borch T., Chefetz B. Adsorptive fractionation of dissolved organic matter (DOM) by mineral soil: macroscale approach and molecular insight // Org. Geochem. 2017. Vol. 103. P. 113-124. https://doi.org/10.1016/j.orggeochem.2016.11.004.
  • Bennett R.H., Hulbert M.H., Curry K.J., Curry A., Douglas J. Organic matter sequestered in potential energy fields predicted by 3-D clay microstructure model // Mar. Geol. 2012. Vol. 315. P. 108-114.
  • Blocklehurst K., Baines B.S., Kierstan M.P.J. Papain and other constituents of Cartica papaya L. // Topics on enzyme and fermentation biotechnology / E. Wiseman, E. Horwad (Eds). 1981. Vol. 5. P. 262-335.
  • Chen H., Koopal L.K., Xiong J., Avena M., Tan W. Mechanisms of soil humic acid adsorption onto montmorillonite and kaolinite // Journal of Colloid And Interface Science. 2017. Vol. 504. P. 457-467.
  • Chen H., Koopal L., Xu J., Wang M., Tan W. Selective adsorption of soil humic acid on binary systems containing kaolinite and goethite: assessment of sorbent interactions // Eur. J. Soil. sci. 2019. Vol. 70. P. 1098-1107.
  • El‐sayed M.E.A., Khalaf M.M.R., Gibson D., Rice J.A. Assessment of clay mineral selectivity for adsorption of aliphatic/aromatic humic acid fraction // Chem. Geol. 2019. Vol. 511. P. 21-27. https://doi.org/10.1016/j.chemgeo.2019.02.034.
  • Feng X., Simpson A.J., Simpson M.J. Chemical and mineralogical controls on humic acid sorption to clay mineral surfaces // Organic Geochemistry. 2005. Vol. 36. P. 1553-1566.
  • Forsyth W.G. Studies on the more soluble complexes of soil organic matter; a method of fractionation // Biochem. J. 1947. Vol. 41. P. 176-181. https://doi.org/10.1042/bj0410176.
  • Ghosh S., Wang Z.‐Y., Kang S., Bhowmik P.C., Xing B.S. Sorption and fractionation of a peat derived humic acid by kaolinite, montmorillonite and goethite // Pedosphere. 2009. Vol. 19. P. 21-30. https://doi.org/10.1016/s1002‐0160(08)60080‐6.
  • Gonzalez J.M., Laird D.A. Carbon sequestration in clay mineral fractions from C-labeled plant residues // Soil Science Society of America Journal. 2003 Vol. 67. No. 6.
  • Hong H., Chen S., Fang Q., Algeo T.J., Zhao L. Adsorption of organic matter on clay minerals in the Dajiuhu peat soil chronosequence, South China // Applied Clay Science. 2019. Vol. 178. Article 105164.
  • Isolation of IHSS Samples. URL: https://humic‐substances.org/isolation-of-ihss-samples.
  • Kahle M., Kleber M., Jahn R. Retention of dissolved organic matter by phyllosilicate and soil clay fractions in relation to mineral properties // Organic Geochemistry. 2004. Vol. 35. No. 3. P. 269-276.
  • Kaiser K., Zech W. Sorption of dissolved organic nitrogen by acid subsoil horizons and individual mineral phases // Eur. J. Soil Sci. 2000. Vol. 51. P. 403-411.
  • Kennedy M.J., Löhr S.C., Fraser S.A., Baruch E.T. Direct evidence for organic carbon preservation as clay-organic nanocomposites in a Devonian black shale; from deposition to diagenesis // Earth and Planetary Science Letters. 2014. Vol. 388. P. 59-70.
  • Khalaf M., Kohl S.D., Klumpp E., Rice J.A., Tombácz E. Comparison of sorption domains in molecular weight fractions of a soil humic acid using solid‐state 19F NMR // Environ. Sci. Technol. 2003. Vol. 37. P. 2855-2860. https://doi.org/10.1021/es0206386.
  • Kleber M., Eusterhues K., Keiluweit M., Mikutta C., Mikutta R., Nico P.S. Mineral‐organic associations: formation, properties, and relevance in soil environments // Adv. Agron. 2015. Vol. 130. P. 1-140. https://doi.org/10.1016/bs.agron.2014.10.005.
  • Kleber M., Sollins P., Sutton R. A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonalstructures on mineral surfaces // Biogeochemistry. 2007. Vol. 85. P. 9-24. https://doi.org/10.1007/S10533-007-9103-5.
  • Kögel‐Knabner I., Guggenberger G., Kleber M., Kandeler E., Kalbitz K., Scheu S., Eusterhues K., Leinweber P. Organo‐mineral associations in temperate soils: integrating biology, mineralogy, and organic matter chemistry // J. Plant Nutr. Soil Sci. 2008. Vol. 171. P. 61-82.
  • Kolchanova K., Tolpeshta I., Izosimova U. Adsorption of fulvic acid and water extractable soil organic matter on kaolinite and muscovite // Agronomy. 2021. Vol. 11. P. 2420. https://doi.org/10.3390/agronomy11122420.
  • Kriaa A., Hamdi N., Srasra E. Determination of point of zero charge of tunisian kaolinites by potentiometric and mass titration methods // Chin. Chem. Soc. 2008. Vol. 55. P. 53-61. https://doi.org/10.1002/jccs.200800010.
  • Laird D.A., Barak P., Nater E.A., Dowdy R.H. Chemistry of smectitic and illitic phases in interstratified soil smectite // Soil Sci. Soc. Am. J. 1991. Vol. 55. P. 1499-1504.
  • Laird D.A., Dowdy R.H. Simultaneous mineralogical quantification and chemical characterization of soil clays // Clays and Clay Minerals. 1994. Vol. 42. No. 6. P. 747-754.
  • Liu X., Sprik M., Cheng J., Meijer E.J., Wang R. Acidity of edge surface sites of montmorillonite and kaolinite // Geochim. Cosmochim. 2013. Vol. 117. P. 180-190. https://doi.org/10.1016/j.gca.2013.04.008.
  • Liu Y., Alessi D.S., Flynn S.L., Alam M.S., Hao W., Gingras M., Zhao H., Konhauser K.O. Acid‐base properties of kaolinite, montmorillonite and illite at marine ionic strength // Chem. Geol. 2018. Vol. 483. P. 191-200. https://doi.org/10.1016/j.chemgeo.2018.01.018.
  • Lützow M.V., Kögel-Knabner A.I., Ekschmitt K. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions - A Review // The European Journal of Soil Science. 2006. Vol. 5. No. 4. P. 426-445.
  • Mayer L.M., Schick L.L., Hardy K.R., Wagai R., MCcarthy J. Organic matter in small mesopores in sediments and soils // Geochimica et Cosmochimica Acta. 2004. Vol. 68. No. 19. P. 3863-3872.
  • Mayer L.M., Xing B. Organic matter-surface area relationships in acid soils // Soil Sci. Soc. Am. J. 2001. Vol. 65. P. 250-258.
  • Miyahara M., Vinu A., Ariga K. Adsorption myoglobin over mesoporous silica molecular sieves: pore size effect and pore-filling model // Mater. Sci. Eng. 2007. Vol. 27. P. 232-236. https://doi.org/10.1016/j.msec.2006.05.012.
  • Ndzana G.M., Huang L., Wang J.B., Zhang Z.Y. Characteristics of clay minerals in soil particles from an argillic horizon of Alfisol in central China // Applied Clay Science. 2018. Vol. 151. P. 148-156.
  • Ransom B., Bennett R.H., Baerwald R., Shea K. TEM study of in situ organic matter on continental margins: occurrence and the “monolayer” hypothesis // Mar. Geol. 1997. Vol. 138. P. 1-9.
  • Ransom B., Kim D., Kastner M., Wainwright S. Organic matter preservation on continental slopes: importance of mineralogy and surface area // Geochim. Cosmochim. 1998. Vol. 62. P. 1329-1345.
  • Saidy A.R., Smernik R.J., Baldock J.A., Kaiser K., Sanderman J. The sorption of organic carbon onto differing clay minerals in the presence and absence of hydrous iron oxide // Geoderma. 2013. Vol. 209-210. P. 15-21.
  • Singh B., Jones E. Organo‐mineral interactions in contrasting soils under natural vegetation // Front. Environ. Sci. 2014. Vol. 2. No. 2. https://doi.org/10.3389/fenvs.2014.00002.
  • Six J., Conant R.T., Paul E.A. Paustian K. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils // Plant and Soil. 2002. Vol. 241. P. 155-176.
  • Specht C.H., Kumke M.U., Frimmel F.H. Characterization of NOM adsorption to clay minerals by size exclusion chromatography // Water Res. 2000. Vol. 34. P. 4063-4069. https://doi.org/10.1016/S0043‐1354(00)00148‐2.
  • Tournassat C., Bourg I.C., Steefel A.I., Bergaya F. Surface Properties of Clay Minerals // Developments in Clay Science. 2015. Vol. 6. P. 5-31.
  • Wang K., Xing B. Structural and sorption characteristics of adsorbed humic acid on clay minerals // J. Environ. Qual. 2005. Vol. 34. P. 342-349. https://doi.org/10.2134/jeq2005.0342.
  • Wei L., Bu H., Wei Y., Wu H., Wang G., Chen P., Li H. Fractionation of natural algal organic matter and its preservation on the surfaces of clay minerals // Applied Clay Science. 2021. Vol. 213. 106235.
  • Yu W.H., Li N., Tong D.S., Zhou C.H., Lin C.H., Xu C.Y. Adsorption of proteins and nucleic acids on clay minerals and their interactions: A review // Applied Clay Science. 2013. Vol. 80-81. P. 443-452.
  • Zhang L., Luo L., Zhang S. Integrated investigations on the adsorption mechanisms of fulvic and humic acids on three clay minerals // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2012. Vol. 406. P. 84-90.
  • Zhang Z.Y., Huang L., Liu F., Wang M.K., Fu Q.L., Zhu J. Characteristics of clay minerals in soil particles of two Alfisols in China // Applied Clay Science. 2016. Vol. 120. P. 51-60.
Еще
Статья