Response to low temperature, soil acidification and aluminium in the varieties of cereal crops
Автор: Karmanenko N.M.
Журнал: Сельскохозяйственная биология @agrobiology
Рубрика: Адаптивный потенциал зерновых культур
Статья в выпуске: 5 т.49, 2014 года.
Бесплатный доступ
Seedling stage is critical in the vegetation of spring varieties. We examined growth of three spring and winter cereal crops, using seeds and seedlings, influenced by temperature and soil stressors. Under controlled conditions, eight varieties were studied: Amir and Engelina (spring wheat), Suzdalets and Nur (spring barley), Mironovskaya 808 and Mironovskaya 39 (winter wheat) and Valdai and Krona (winter rye). In the experiments the percentage of seed germination, the rate of seed weight loss during germination, the total length of roots, the shoot length, the length of the longest root, the dry weight of roots and aboveground parts were investigated. Also there were calculated the rates of an average root lengths of the influenced to control seedlings (root length index - RLI), the weight of seedlings under acidic conditions with Al 3+ to that under neutral pH (resistance coefficient - RC), and the dry weights of roots to shoots (root index - RI). In the tolerant spring wheat and barley varieties (Amir and Suzdalets, respectively), the root and shoot lengths decreased under acidification, Al 3+ influence and low temperature impact. In winter wheat Mironovskaya 808 the intensive growth of roots and aboveground parts was observed under optimal conditions and after freezing at acidification and Al 3+ influence. In the stressed plants of winter wheat Moskovskaya 39 the growth activity was depressed. In winter rye Valdai the low temperature caused an increase of root length. In sensitive spring wheat variety Engelina the root length and the seedling weight increased in acidic conditions with Аl 3+ at low temperature. In winter wheat Mironovskaya 808 the higher RI was observed, when the Аl 3+ concentration and acidity rose, and under the influence of low temperature. Winter wheat Moskovskaya 39 showed a low root to shoot ratio in all conditions. In rye plants the RI did not change. In spring wheat Amir and barley Suzdalets the RLI values rose in presence of Н +, Аl 3+ and came down at low temperatures. In winter wheat Mironovskaya 808 and rye Valdai this index also rose under acidification, in presence of Аl 3+ and after freezing. At low positive temperatures, acidification and Аl 3+ the rate of seed weight loss was lower. And, in contrast, this parameter increased in barley Nur, in winter wheats Mironovskaya 808 and Moskovskaya 39, and in rye Krona after freezing. Under Н + and Аl 3+ influence the seed germination decreased in spring wheat Engelina and barley Suzdalets, increased in winter wheat Mironovskaya 808 and rye Valdai, and remained unchanged in winter wheat Moskovskaya 39. So, to reduce the impact of soil acidification and high Аl 3+ concentration under plant cultivation the variety response to these factors should be considered. As a rational approach, the purposeful creation of tolerant cereal varieties should also be used.
Tolerance, seedling, low temperature, freezing, soil acidification, aluminium ions, wheat, barley, rye, seed germination, root growth, seedling development
Короткий адрес: https://sciup.org/142133543
IDR: 142133543