Сортовая специфичность эффектов ризобактерий в отношении азотфиксирующего симбиоза и минерального питания сои в условиях агроценоза

Автор: Береговая Ю.В., Тычинская И.Л., Петрова С.Н., Парахин Н.В., Пухальский Я.В., Макарова Н.М., Шапошников А.И., Белимов А.А.

Журнал: Сельскохозяйственная биология @agrobiology

Рубрика: Агросистемы будущего растение и почва

Статья в выпуске: 5 т.53, 2018 года.

Бесплатный доступ

Для бобовых растений важным механизмом взаимодействия с ризобактериями служит их способность стимулировать формирование азотфиксирующего симбиоза с клубеньковыми бактериями. В то же время мало известно о внутривидовой (сортовой) изменчивости бобовых растений в реакциях на инокуляцию ризобактериями. Наши недавние модельные исследования с проростками сои на гидропонике показали способность ризобактерии Pseudomonas oryzihabitans Ep4, продуцирующей ауксины и содержащей АЦК дезаминазу, активнее стимулировать рост и колонизировать корни у сортов Красивая Меча и Свапа, чем у сорта Бара. Целью настоящей работы было изучение сортоспецифичных ответных реакций растений сои Glycine max (L.) Merr. на инокуляцию ризосферными бактериями при различном минеральном питании в условиях агроценоза. Исследования выполняли на трех раннеспелых районированных сортах сои северных экотипов - Красивая Меча, Свапа и Бара. Использовали штаммы ризобактерий Ps. oryzihabitans Ep4 и Variovorax paradoxus 3-P4...

Еще

Внутривидовая изменчивость, минеральное питание, ризосфера, симбиотическая азотфиксация, фитогормоны, агроценоз

Короткий адрес: https://sciup.org/142216604

IDR: 142216604   |   DOI: 10.15389/agrobiology.2018.5.977rus

Список литературы Сортовая специфичность эффектов ризобактерий в отношении азотфиксирующего симбиоза и минерального питания сои в условиях агроценоза

  • Vessey J.K. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil, 2003, 255(2): 571-586 ( ) DOI: 10.1023/A:1026037216893
  • Bashan Y., Holguin G., de-Bashan L.E. Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997-2003). Can. J. Microbiol., 2004, 50(8): 521-577 ( ) DOI: 10.1139/w04-035
  • Glick B.R., Cheng Z., Czarny J., Duan J. Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur. J. Plant Pathol., 2007, 119(3): 329-339 ( ) DOI: 10.1007/s10658-007-9162-4
  • Plant growth and health promoting bacteria/D.K. Maheshwari (ed.). Springer-Verlag, Berlin, Heidelberg, 2010 ( ) DOI: 10.1007/978-3-642-13612-2
  • Nascimento F.X., Rossi M.J., Soares C.R.F.S., McConkey B.J., Glick B.R. New insights into 1-aminocyclopropane-1-carboxylate (ACC) deaminase phylogeny, evolution and ecological significance. PLoS ONE, 2014, 9(6): e99168 ( ) DOI: 10.1371/journal.pone.0099168
  • Korir H., Mungai N.W., Thuita M., Hamba Y., Masso C. Co-inoculation effect of rhizobia and plant growth promoting rhizobacteria on common bean growth in a low phosphorus soil. Front. Plant Sci., 2017, 8: 141 ( ) DOI: 10.3389/fpls.2017.00141
  • Medeot D.B., Paulucci N.S., Albornoz A.I., Fumero M.V., Bueno M.A., Garcia M.B., Woel-ke V.R., Okon Y., Dardanelli M.S. Plant growth promoting rhizobacteria improving the legume-rhizobia symbiosis. In: Microbes for legume improvement/M.S. Khan, A. Zaidi, J. Musarrat (eds.). Springer-Verlag, Vienna, 2010: 473-494 ( ) DOI: 10.1007/978-3-211-99753-6_19
  • Pérez-Montaño F., Alías-Villegas C., Bellogín R.A., del Cerro P., Espuny M.R., Jiménez-Guerrero I., López-Baena F.J., Ollero F.J., Cubo T. Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiol. Res., 2014, 169(5-6): 325-336 ( ) DOI: 10.1016/j.micres.2013.09.011
  • Polonenko D.R., Scher F.M., Kloepper J.W., Singgleton C.A., Laliberte M., Zaleska I. Effects of roots colonizing bacteria on nodulation of soybean roots by Bradyrhizobium japonicum. Can. J. Microbiol., 1987, 33(6): 498-503 ( ) DOI: 10.1139/m87-083
  • Zhang F., Dashti N., Hynes R.K., Smith D.L. Plant growth promoting rhizobacteria and soybean nodulation and nitrogen fixation at suboptimal root zone temperatures. Annals of Botany, 1996, 77(5): 453-460 ( ) DOI: 10.1006/anbo.1996.0055
  • Chebotar V.K., Asis C.A., Akao S. Production of growth-promoting substances and high colonization ability of rhizobacteria enhance the nitrogen fixation of soybean when coinoculated with Bradyrhizobium japonicum. Biol. Fert. Soils, 2001, 34(6): 427-432 ( ) DOI: 10.1007/s00374-001-0426-4
  • Hungria M., Nogueira M., Araujo R. Co-inoculation of soybeans and common beans with rhizobia and azospirilla: strategies to improve sustainability. Biol. Fert. Soils, 2013, 49(7): 791-801 ( ) DOI: 10.1007/s00374-012-0771-5
  • Bai Y., D'Aoust F., Smith D.L., Driscoll B.T. Isolation of plant-growth-promoting Bacillus strains from soybean root nodules. Can. J. Microbiol., 2002, 48(3): 230-238 ( ) DOI: 10.1139/w02-014
  • Bai Y., Zhou-Xiao M., Smith D.L. Enhanced soybean plant growth resulting from coinoculation of Bacillus strains with Bradyrhizobium japonicum. Crop Sci., 2003, 43(5): 1774-1781 ( ) DOI: 10.2135/cropsci2003.1774
  • Atieno M., Herrmann L., Okalebo R., Lesueur D. Efficiency of different formulations of Bradyrhizobium japonicum and effect of co-inoculation of Bacillus subtilis with two different strains of Bradyrhizobium japonicum. World J. Microbiol. Biotechnol., 2012, 28(7): 2541-2550 ( ) DOI: 10.1007/s11274-012-1062-x
  • Tsigie A., Tilak K.V.B.R., Anil K.S. Field response of legumes to inoculation with plant growth-promoting rhizobacteria. Biol. Fert. Soils, 2012, 47: 971-974 ( ) DOI: 10.1007/s00374-011-0573-1
  • Masciarelli O., Llanes A., Luna V. A new PGPR co-inoculated with Bradyrhizobium japonicum enhances soybean nodulation. Microbiol. Res., 2014, 169: 609-615 ( ) DOI: 10.1016/j.micres.2013.10.001
  • Mishra P.K., Mishra S., Selvakumar G., Kundu S., Gupta H.S. Enhanced soybean (Glycine max L.) plant growth and nodulation by Bradyrhizobium japonicum-SB1 in presence of Bacillus thuringiensis-KR1. Acta Agr. Scand. B-S. P., 2009, 59(2): 189-196 ( ) DOI: 10.1080/09064710802040558
  • Diep C.N., My N.T.X., Nhu V.T.P. Isolation and characterization of endophytic bacteria in soybean root nodules. World Journal of Pharmacy and Pharmaceutical Sciences, 2016, 5(6): 222-241.
  • Shiri-Janagard M., Raei Y., Gasemi-Golezani G., Aliasgarzad N. Influence of Bradyrhizobium japonicum and phosphate solubilizing bacteria on soybean yield at different levels of nitrogen and phosphorus. International Journal of Agronomy and Plant Production, 2012, 3(11): 544-549.
  • Belimov A.A., Dodd I.C., Hontzeas N., Theobald J.C., Safronova V.I., Davies W.J. Rhizosphere bacteria containing ACC deaminase increase yield of plants grown in drying soil via both local and systemic hormone signaling. New Phytol., 2009, 181: 413-423 ( ) DOI: 10.1111/j.1469-8137.2008.02657.x
  • Gamalero E., Glick B.R. Bacterial modulation of plant ethylene levels. Plant Physiol., 2015, 169: 13-22 ( ) DOI: 10.1104/pp.15.00284
  • Nascimento F.X., Brígido C., Glick B.R., Rossi M.J. The role of rhizobial ACC deaminase in the nodulation process of leguminous plants. International Journal of Agronomy, 2016, 2016: Article ID 1369472 ( ) DOI: 10.1155/2016/1369472
  • Remans R., Beebe S., Blair M., Manrique G., Tovar E., Rao I., Croonenborghs A., Torres-Gutierrez R., El-Howeity M., Michiels J., Vanderleyden J. Physiological and genetic analysis of root responsiveness to auxin-producing plant growth-promoting bacteria in common bean (Phaseolus vulgaris L.). Plant Soil, 2008, 302(1-2): 149-161 ( ) DOI: 10.1007/s11104-007-9462-7
  • Safronova V.I., Stepanok V.V., Engqvist G.L., Alekseyev Y.V., Belimov A.A. Root-associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biol. Fert. Soils, 2006, 42(3): 267-272 ( ) DOI: 10.1007/s00374-005-0024-y
  • Das S.K., Sharma K.L., Neelam S., Srinivas K. Effect of cultivars, nitrogen sources and soil types on response of sorghum (Sorghum bicolor L.) to Azospirillum inoculation. Ann. Agric. Sci., 1997, 18(3): 313-317.
  • Saubidet M.I., Barneix A.J. Growth stimulation and nitrogen supply to wheat plants inoculated with Azospirillum brasilense. J. Plant Nutr., 1998, 21(12): 2565-2577 ( ) DOI: 10.1080/01904169809365588
  • Burdman S., Kigel J., Okon Y. Effects of Azospirillum brasilense on nodulation and growth of common bean (Phaseolus vulgaris L.). Soil Biol. Biochem., 1997, 29(5-6): 923-929 ( ) DOI: 10.1016/S0038-0717(96)00222-2
  • Walker V., Bertrand C., Bellvert F., Mënne-Loccoz Y., Bally R., Comte G. Host plant secondary metabolite profiling shows a complex, strain-dependent response of maize to plant growth-promoting rhizobacteria of the genus Azospirillum. New Phytol., 2011, 189(2): 494-506 ( ) DOI: 10.1111/j.1469-8137.2010.03484.x
  • Dashti N., Zhang F., Hynes R., Smith D.L. Plant growth promoting rhizobacteria accelerate nodulation and increase nitrogen fixation activity by field grown soybean under short season conditions. Plant Soil, 1998, 200(2): 205-213 ( ) DOI: 10.1023/A:1004358100856
  • Белимов А.А., Демчинская С.В., Сафронова В.И. Реакция гороха на инокуляцию ризосферными АЦК-утилизирующими бактериями в присутствии эндомикоризного гриба Glomus intraradices. Сельскохозяйственная биология, 2012, 3: 90-97.
  • Кузмичева Ю.В., Шапошников А.И., Азарова Т.С., Петрова С.Н., Наумкина Т.С., Борисов А.Ю., Белимов А.А., Кравченко Л.В., Парахин Н.В., Тихонович И.А. Состав корневых экзометаболитов высокосимбиотрофного сорта гороха Триумф и его родительских форм. Физиология растений, 2014, 61(1): 121-128.
  • Imran A., Mirza M.S., Shah T.M., Malik K.A., Hafeez F.Y. Differential response of kabuli and desi chickpea genotypes toward inoculation with PGPR in different soils. Front. Microbiol., 2015, 6: 859 ( ) DOI: 10.3389/fmicb.2015.00859
  • Drogue B., Sanguin H., Chamam A., Mozar M., Llauro C., Panaud O., Prigent-Combaret C., Picault N., Wisniewski-Dye F. Plant root transcriptome profiling reveals a strain-dependent response during Azospirillum-rice cooperation. Front. Plant. Sci., 2014, 5: 607 ( ) DOI: 10.3389/fpls.2014.00607
  • Okubara P.A., Kornoely J.P., Landa B.B. Rhizosphere colonization of hexaploid wheat by Pseudomonas fluorescens strains Q8rl-96 and Q2-87 is cultivar-variable and associated with changes in gross root morphology. Biol. Control, 2004, 30(2): 392-403 ( ) DOI: 10.1016/j.biocontrol.2003.11.003
  • Smith K.P., Goodman R.M. Host variation for interactions with beneficial plant-associated microbes. Annu. Rev. Phytopathol., 1999, 37: 473-491 ( ) DOI: 10.1146/annurev.phyto.37.1.473
  • Kuzmicheva Y.V., Shaposhnikov A.I., Petrova S.N., Makarova N.M., Tychinskaya I.L., Puhalsky J.V., Parahin N.V., Tikhonovich I.A., Belimov A.A. Variety specific relationships between effects of rhizobacteria on root exudation, growth and nutrient uptake of soybean. Plant Soil, 2017, 419(1-2): 83-96 ( ) DOI: 10.1007/s11104-017-3320-z
  • Belimov A.A., Safronova V.I., Sergeyeva T.A., Egorova T.N., Matveyeva V.A., Tsyganov V.E., Borisov A.Y., Tikhonovich I.A., Kluge C., Preisfeld A., Dietz K.J., Stepanok V.V. Characterisation of plant growth-promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can. J. Microbiol., 2001, 47(7): 642-652 ( ) DOI: 10.1139/cjm-47-7-642
  • Belimov A.A., Hontzeas N., Safronova V.I., Demchinskaya S.V., Piluzza G., Bullitta S., Glick B.R. Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol. Biochem., 2005, 37(2): 241-250 ( ) DOI: 10.1016/j.soilbio.2004.07.033
  • Лактионов Ю.В., Попова Т.А., Андреев О.А., Ибатуллина Р.П., Кожемяков А.П. Создание стабильной формы ростстимулирующих микробиологических препаратов и их эффективность. Сельскохозяйственная биология, 2011, 3: 116-118.
  • Arinushkina E.V. Guidelines for the chemical analysis of soils. Moscow State University Press, Moscow, 1970.
  • Hardy R.W.F., Bums R.C., Holsten R.D. Application of the C2H2-C2H4 assay for measurement of nitrogen fixation. Soil Biol. Biochem., 1973, 5(1): 47-82 ( ) DOI: 10.1016/0038-0717(73)90093-X
  • Preston G.M. Plant perceptions of plant growth-promoting Pseudomonas. Philos. T. Roy. Soc. B, 2004, 359(1446): 907-918 ( ) DOI: 10.1098/rstb.2003.1384
  • Patten C.L., Glick B.R. Bacterial biosynthesis of indole-3-acetic acid. Can. J. Microbiol., 1996, 42(3): 207-220 ( ) DOI: 10.1139/m96-032
  • Spaepen S., Vanderleyden J., Remans R. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev., 2007, 31(4): 425-448 ( ) DOI: 10.1111/j.1574-6976.2007.00072.x
  • Badri D.V., Quintana N., El-Kassis E.G., Kim H.K., Choi Y.H., Sugiyama A., Verpoorte R., Martinoia E., Manter D.K., Vivanco J.M. An ABC transporter mutation alters root exudation of phytochemicals that provoke an overhaul of natural soil microbiota. Plant Physiol., 2009, 151: 2006-2017 ( ) DOI: 10.1104/pp.109.147462
  • Saleem M., Arshad M., Hussain S., Bhatti A.S. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J. Ind. Microbiol. Biot., 2007, 34(10): 635-648 ( ) DOI: 10.1007/s10295-007-0240-6
  • Krotzky A., Bergold R., Werner D. Plant characteristics limiting associative N2 fixation with two cultivars of sorghum mutants. Soil Biol. Biochem., 1988, 20(2): 157-162 ( ) DOI: 10.1016/0038-0717(88)90032-6
  • Verma J.P., Yadav J., Tiwari K.N. Enhancement of nodulation and yield of chickpea by co-inoculation of indigenous Mesorhizobium spp. and plant growth-promoting rhizobacteria in Eastern Uttar Pradesh. Commun. Soil Sci. Plan., 2012, 43(3): 605-621 ( ) DOI: 10.1080/00103624.2012.639110
  • Wani P.A., Khan M.S., Zaidi A. Co-inoculation of nitrogen fixing and phosphate solubilizing bacteria to promote growth, yield and nutrient uptake in chickpea. Acta Agron. Hung., 2007, 55(3): 315-323 ( ) DOI: 10.1556/AAgr.55.2007.3.7
  • Elkoca E., Turan M., Donmez M.F. Effects of single, dual and triple inoculations with Bacillus subtilis, Bacillus megaterium and Rhizobium leguminosarum bv. phaseoli on nodulation, nutrient uptake, yield and yield parameters of common bean (Phaseolus vulgaris L. cv. ‘ELKOCA-05'). J. Plant Nutr., 2010, 33(14): 2104-2119 ( ) DOI: 10.1080/01904167.2010.519084
  • Figueiredo M.V.B., Martinez C.R., Burity H.A., Chanway C.P. Plant growth-promoting rhizobacteria for improving nodulation and nitrogen fixation in the common bean (Phaseolus vulgaris L.). World J. Microb. Biot., 2008, 24(7): 1187-1193 ( ) DOI: 10.1007/s11274-007-9591-4
  • Yadegari M., Asadi Rahmani H., Noormohammadi G., Ayneband A. Plant growth promoting rhizobacteria increase growth, yield and nitrogen fixation in Phaseolus vulgaris. J. Plant Nutr., 2010, 33(12): 1733-1743 ( ) DOI: 10.1080/01904167.2010.503776
  • Tilak K.V.B.R., Ranganayaki N., Manoharachari C. Synergistic effects of plant-growth promoting rhizobacteria and Rhizobium on nodulation and nitrogen fixation by pigeon pea (Cajanus cajan). Eur. J. Soil Sci., 2006, 57(1): 67-71 ( ) DOI: 10.1111/j.1365-2389.2006.00771.x
  • Dileep Kumar B.S., Berggren I., Mårtensson A.M. Potential for improving pea production by co-inoculation with fluorescent Pseudomonas and Rhizobium. Plant Soil, 2001, 229(1): 25-34 ( ) DOI: 10.1023/A:1004896118286
  • Mishra P.K., Mishra S., Selvakumar G., Bisht J. K., Kundu S., Gupta H.S. Co-inoculation of Bacillus thuringeinsis-KR1 with Rhizobium leguminosarum enhances plant growth and nodulation of pea (Pisum sativum L.) and lentil (Lens culinaris L.). World J. Microb. Biot., 2009, 25(5): 753-761 ( ) DOI: 10.1007/s11274-009-9963-z
  • Qureshi M.A., Shakir M.A., Iqbal A., Akhtar N., Khan A. Co-inoculation of phosphate solubilizing bacteria and rhizobia for improving growth and yield of mungbean (Vigna radiata L.). J. Anim. Plant Sci., 2012, 21(3): 491-497.
  • Guinazu L.B., Andres J.A., Del Papa M.F., Pistorio M., Rosas S.B. Response of alfalfa (Medicago sativa L.) to single and mixed inoculation with phosphate-solubilising bacteria and Sinorhizobium meliloti. Biol. Fert. Soils, 2010, 46(2): 185-190 ( ) DOI: 10.1007/s00374-009-0408-5
  • Wang Q., Dodd I.C., Belimov A.A., Jiang F. Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase growth and photosynthesis of pea plants under salt stress by limiting Na+ accumulation. Funct. Plant Biol., 2016, 43(2): 161-172.
  • Belimov A.A., Puhalsky I.V., Safronova V.I., Shaposhnikov A.I., Vishnyakova M.A., Semenova E.V., Zinovkina N.Y., Makarova N.M., Wenzel W., Tikhonovich I.A. Role of plant genotype and soil conditions in symbiotic plant-microbe interactions for adaptation of plants to cadmium polluted soils. Water Air Soil Poll., 2015, 226(8): 1-15 ( ) DOI: 10.1007/s11270-015-2537-9
Еще
Статья научная