Improvement of Quality Management Methods of Mechanical-Building Enterprises through the Use of Artifi cial Intelligence Tools in PLM Systems at Various Stages of the Product Life Cycle
Автор: F.V. Gretchnikov, A.S. Klentak, V.N. Piunov, V.I. Ushakov
Журнал: Известия Самарского научного центра Российской академии наук @izvestiya-ssc
Рубрика: Машиностроение и машиноведение
Статья в выпуске: 5 т.27, 2025 года.
Бесплатный доступ
This article examines modern approaches to integrating artifi cial intelligence into product lifecycle management systems. Using case studies from the automotive industry, it demonstrates how machine learning technologies, graph databases, and digital twins can signifi cantly improve the effi ciency of key processes—from design to operation. The article examines not only the expected benefi ts but also the typical challenges of integrating artifi cial intelligence, supporting its arguments with concrete practical data: increased inspection accuracy, reduced design time, and reduced operating costs, which collectively ensures a high project return on investment.
PLM, artifi cial intelligence, machine learning, digital twin, design automation, industrial enterprises
Короткий адрес: https://sciup.org/148332407
IDR: 148332407 | УДК: 658.5:004.413 | DOI: 10.37313/1990-5378-2025-27-5-112-115