Joint analysis of radiological reports and ct images for automatic validation of pathological brain conditions

Автор: Agafonova Julia Dmitrievna, Gaidel Andrey Viktorovich, Zelter Pavel Mikhailovich, Kapishnikov Aleksandr Viktorovich, Kuznetsov Andrey Vladimirovich, Surovtsev Evgeny Nikolaevich, Nikonorov Artem Vladimirovich

Журнал: Компьютерная оптика @computer-optics

Рубрика: Обработка изображений, распознавание образов

Статья в выпуске: 1 т.47, 2023 года.

Бесплатный доступ

We consider a problem of validation of radiological medical reports and computed tomography images for an automated analysis of brain structures. Two methods for solving the problem are proposed: a method based on the ruCLIP multimodal model, and a method based on the joint use of two separate classifiers - for a text report and for a brain CT image. We discuss methods evaluation and the obtained results. The proposed approaches make it possible to correctly classify 99.6 % of radiological reports from a test sampling into 15 possible diagnoses.

Deep learning, computed tomography, computer-aided diagnosis, pattern recognition, natural language processing

Короткий адрес: https://sciup.org/140296252

IDR: 140296252   |   DOI: 10.18287/2412-6179-CO-1201

Статья научная