Современные методы исследования апоптоза с применением проточной цитофлюориметрии

Автор: Власова Виолетта Викторовна, Сайдакова Евгения Владимировна

Журнал: Вестник Пермского университета. Серия: Биология @vestnik-psu-bio

Рубрика: Иммунология

Статья в выпуске: 4, 2018 года.

Бесплатный доступ

В процессе апоптоза - программной гибели - клетка претерпевает ряд консервативных биохимических изменений. Среди них ключевыми событиями являются потеря трансмембранного потенциала митохондрий, активация проапоптотических белков семейства Bcl-2, нарушение липидной асимметрии и повышение проницаемости цитоплазматической мембраны, активация ферментов из семейства каспаз и фрагментация нуклеиновых кислот. Многоцветная проточная цитофлюоримет-рия позволяет детектировать большинство из событий, свидетельствующих об индукции программной гибели клетки, что дает возможность исследования апоптоза на самых ранних его этапах. В настоящей статье описаны основные подходы к детекции апоптоза с применением многоцветной проточной цитофлюориметрии; рассмотрены молекулярные процессы, лежащие в их основе; обозначены преимущества и ограничения в использовании различных методов определения программной гибели клеток в биологии и медицине.

Еще

Проточная цитофлюориметрия, апоптоз, митохондрии, проницаемость цитоплазматической мембраны, асимметрия цитоплазматической мембраны, каспазы, фрагментация днк

Короткий адрес: https://sciup.org/147227052

IDR: 147227052   |   DOI: 10.17072/1994-9952-2018-4-430-442

Список литературы Современные методы исследования апоптоза с применением проточной цитофлюориметрии

  • Anita et al. Apoptosis (programmed cell death) - A review // World Journal of Pharmaceutical Research. 2014. Vol. 3. P. 1854-1872.
  • Autret A., Martin S.J. Emerging role for members of the Bcl-2 family in mitochondrial morphogenesis // Mol. Cell. 2009. Vol. 36. P. 355-363.
  • Brazeau E. et al. Varicella-zoster virus-induced apoptosis in MeWo cells is accompanied by down-regulation of Bcl-2 expression // J. Neurovi-rol. 2010. Vol. 16. P. 133-140.
  • Burz C. et al. Apoptosis in cancer: key molecular signaling pathways and therapy targets // Acta Oncol. 2009. Vol. 48. P. 811-821.
  • Cain K., Bratton S.B., Cohen G.M. The Apaf-1 apoptosome: a large caspase-activating complex // Biochimie. 2002. Vol. 84. P. 203-214.
  • Darzynkiewicz Z., Bedner E. Analysis of apoptotic cells by flow and laser scanning cytometry // Methods in Enzymology. 2000. Vol. 322. P. 18-39.
  • Darzynkiewicz Z., Galkowski D., Zhao H. Analysis of apoptosis by cytometry using TUNEL assay // Methods. 2008. Vol. 44. P. 250-254.
  • Darzynkiewicz Z. et al. Cytometric methods to detect apoptosis // Methods in cell biology. 2004. Vol. 75. P. 307-341.
  • Dillon S.R. et al. Annexin V binds to viable B cells and colocalizes with a marker of lipid rafts upon B cell receptor activation // J. Immunol. 2000. Vol. 164. P. 1322-1332.
  • Eckelman B.P., Salvesen G.S., Scott F.L. Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family // EMBO reports. 2006. Vol. 7. P. 988-994.
  • Eguchi K. Apoptosis in autoimmune diseases // Intern. Med. 2001. Vol. 40. P. 275-284.
  • Fadeel B., Xue D. The ins and outs of phospholipid asymmetry in the plasma membrane: roles in health and disease // Critical Reviews in Biochemistry and Molecular Biology. 2009. Vol. 44. P. 264-277.
  • Fadeel B., Xue D., Kagan V. Programmed cell clearance: molecular regulation of the elimination of apoptotic cell corpses and its role in the resolution of inflammation // Biochem. Biophys. Res. Commun. 2010. Vol. 396. P. 7-10.
  • Fadok V.A. et al. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages // J. Immunol. 1992. Vol. 148. P. 2207-2216.
  • Fujita T., Ishikawa Y. The role of the beta-adrenergic receptor-mediated signaling pathway and p53-mediated signaling pathway in the apoptosis of cardiomyocytes // Circ. J. 2011. Vol. 75. P. 1811-1818.
  • Gastman B.R. et al. Caspase-mediated degradation of T-cell receptor {{zeta}}-Chain // Cancer Res. 1999. Vol. 59. P. 1422-1427.
  • Gobe G. et al. Apoptosis and expression of Bcl-2, Bcl-XL, and Bax in renal cell carcinomas // Cancer Invest. 2002. Vol. 20. P. 324-332.
  • Han H. et al. Prognostic value of immunohistochemi-cal expressions of p53, HER-2/neu, and bcl-2 in stage I non-small-cell lung cancer // Hum. Pathol. 2002. Vol. 33. P. 105-110.
  • Happo L., Strasser A., Cory S. BH3-only proteins in apoptosis at a glance // J. Cell Sci. 2012. Vol. 125. P. 1081-1087.
  • Hedgecock E.M., Sulston J.E., Thomson J.N. Mutations affecting programmed cell deaths in the nematode Caenorhabditis elegans // Science. 1983. Vol. 220. P. 1277-1279.
  • Hengartner M.O. The biochemistry of apoptosis // Nature. 2000. Vol. 407. P. 770-776.
  • Herrmann M., Voll R.E., Kalden J.R. Etiopathogene-sis of systemic lupus erythematosus // Immunol. Today. 2000. Vol. 21. P. 424-426.
  • Kaufmann T. et al. The BH3-only protein bid is dispensable for DNA damage- and replicative stress-induced apoptosis or Cell-cycle arrest // Cell. 2007. Vol. 129. P. 423-433.
  • Kerr J.F., Wyllie A.H., Currie A.R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics // Br. J. Cancer. 1972. Vol. 26. P. 239-257.
  • Kim Y.J. et al. Caspase 3-cleaved N-terminal fragments of wild-type and mutant huntingtin are present in normal and Huntington's disease brains, associate with membranes, and undergo cal-pain-dependent proteolysis // Proceedings of the National Academy of Sciences of the United States of America. 2001. Vol. 98. P. 12784-12789.
  • Kroemer G. et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009 // Cell Death and Differentiation. 2009. Vol. 16. P. 3-11.
  • Kroemer G., Reed J.C. Mitochondrial control of cell death // Nature Medicine. 2000. Vol. 6. P. 513-519.
  • Kuge O., Nishijima M. Biosynthetic regulation and intracellular transport of phosphatidylserine in mammalian cells // J. Biochem. 2003. Vol. 133. P. 397-403.
  • Kuwana et al. BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly // Mol. Cell. 2005. Vol. 17. P. 525-535.
  • Li L.Y., Luo X., Wang X. Endonuclease G is an apoptotic DNase when released from mitochondria // Nature. 2001. Vol. 412. P. 95-99.
  • Lin J.D. The role of apoptosis in autoimmune thyroid disorders and thyroid cancer // BMJ. 2001. Vol. 322. P. 1525-1527.
  • Lizard G. Changes in light scatter properties are a general feature of cell death but are not characteristic of apoptotically dying cells // Cytometry. 2001. Vol. 46. P. 65-65.
  • Martin S. et al. Immunologic stimulation of mast cells leads to the reversible exposure of phosphatidylserine in the absence of apoptosis // Int Arch Allergy Immunol. 2000. Vol. 123. P. 249-258.
  • Mohammad R.M. et al. Preclinical studies of a non-peptidic small-molecule inhibitor of Bcl-2 and Bcl-X(L) [(-)-gossypol] against diffuse large cell lymphoma // Mol. Cancer Ther. 2005. Vol. 4. P. 13-21.
  • Munoz L.E. et al. The role of defective clearance of apoptotic cells in systemic autoimmunity // Nature Reviews Rheumatology. 2010. Vol. 6. P. 280-289.
  • Nagata S. Apoptosis and autoimmune diseases // Ann. N Y Acad. Sci. 2010. Vol. 1209. P. 10-16.
  • Nagata S. Autoimmune diseases caused by defects in clearing dead cells and nuclei expelled from erythroid precursors // Immunological reviews. 2007. Vol. 220. P. 237-250.
  • Nagata S. et al. Degradation of chromosomal DNA during apoptosis // Cell Death and Differentiation. 2003. Vol. 10. P. 108-116.
  • Nakano K., Vousden K.H. PUMA, a novel proapoptotic gene, is induced by p53 // Molecular Cell. 2001. Vol. 7. P. 683-694.
  • Ndozangue-Touriguine O., Hamelin J, Breard J. Cytoskeleton and apoptosis // Biochemical Pharmacology. 2008. Vol. 76. P. 11-18.
  • Nemazee D. Receptor selection in B and T lymphocytes // Annu. Rev. Immunol. 2000. Vol. 18. P. 19-51.
  • Nur E.K.A. et al. Single-stranded DNA induces ataxia telangiectasia mutant (ATM)/p53-dependent DNA damage and apoptotic signals // J. Biol. Chem. 2003. Vol. 278. P. 12475-12481.
  • Oda E. et al. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis // Science. 2000. Vol. 288. P. 1053-1058.
  • Ormerod M. G. Investigating the relationship between the cell cycle and apoptosis using flow cytometry // J. Immunol. Methods. 2002. Vol. 265. P. 73-80.
  • Ormerod M.G., Cheetham F.P.M., Sun X.M. Discrimination of apoptotic thymocytes by forward light scatter // Cytometry. 1995. Vol. 21. P. 300-304.
  • Pena F.J. et al. A new and simple method to evaluate early membrane changes in frozen-thawed boar spermatozoa // International Journal of Andrology. 2005. Vol. 28. P. 107-114.
  • Petit P.X. et al. Analysis of the membrane potential of rat- and mouse-liver mitochondria by flow cytometry and possible applications // Eur. J. Biochem. 1990. Vol. 194. P. 389-397.
  • Radic M., Marion T., Monestier M. Nucleosomes are exposed at the cell surface in apoptosis // J. Immunol. 2004. Vol. 172. P. 6692-6700.
  • Rassendren F. et al. The permeabilizing ATP receptor, P2X7. Cloning and expression of a human cDNA // J. Biol. Chem. 1997. Vol. 272. P. 5482-5486.
  • Rohn T.T. The role of caspases in Alzheimer's disease; potential novel therapeutic opportunities // Apoptosis. 2010. Vol. 15. P. 1403-1409.
  • Roos W.P., Kaina, B. DNA damage-induced cell death by apoptosis // Trends Mol. Med. 2006. Vol. 12. P. 440-450.
  • Rysavy N.M. et al. Beyond apoptosis: The mechanism and function of phosphatidylserine asymmetry in the membrane of activating mast cells // BioArchitecture. 2014. Vol. 4. P. 127-137.
  • Samantaray S. et al. The parkinsonian neurotoxin rotenone activates calpain and caspase-3 leading to motoneuron degeneration in spinal cord of Lewis rats // Neuroscience. 2007. Vol. 146. P. 741-755.
  • Samejima K., Earnshaw W.C. Trashing the genome: the role of nucleases during apoptosis // Nat Rev Mol Cell Biol. 2005. Vol. 6. P. 677-88.
  • Thoren F.B., Romero A.I., Hellstrand K. Oxygen radicals induce Poly(ADP-ribose) polymerase-dependent cell death in cytotoxic lymphocytes // J. Immunol. 2006. Vol. 176. P. 7301-7307.
  • Tripathi A.K., Pareek A., Singla-Pareek S.L. A NAP-family histone chaperone functions in abiotic stress response and adaptation // Plant Physiol. 2016. Vol. 171. P. 2854-2868.
  • van den Eijnde S.M. et al. Transient expression of phosphatidylserine at cell-cell contact areas is required for myotube formation // J. Cell Sci. 2001. Vol. 114. P. 3631-3642.
  • van Engeland M. et al. Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure // Cytometry. 1998. Vol. 31. P. 1-9.
  • Virginio C. et al. Kinetics of cell lysis, dye uptake and permeability changes in cells expressing the rat P2X7 receptor // J. Physiol. 1999. Vol. 519. P. 335-346.
  • Vucic S., Kiernan M.C. Pathophysiology of neurodegeneration in familial amyotrophic lateral sclerosis// Curr. Mol. Med. 2009. Vol. 9. P. 255-272.
  • Wersto R.P. et al. Doublet discrimination in DNA cell-cycle analysis // Cytometry. 2001. Vol. 46. P. 296-306.
  • Whelan R.S., Kaplinskiy V., Kitsis R.N. Cell death in the pathogenesis of heart disease: mechanisms and significance // Annu. Rev. Physiol. 2010. Vol. 72. P. 19-44.
  • Yaron F., Steller H. Programmed Cell death in animal development and disease // Cell. 2011. Vol. 147. P. 742-758.
  • Yethon J.A. et al. Interaction with a membrane surface triggers a reversible conformational change in Bax normally associated with induction of apoptosis // J. Biol. Chem. 2003. Vol. 278. P. 48935-48941.
  • Youle R.J., Strasser A. The BCL-2 protein family: opposing activities that mediate cell death // Nature Reviews Molecular Cell Biology. 2008. Vol. 9. P. 47-59.
  • Ziegler U., Groscurth P. Morphological features of cell death // News Physiol. Sci. 2004. Vol. 19. P. 124-128.
  • Zou H. et al. Regulation of the Apaf-1/Caspase-9 Apoptosome by Caspase-3 and XIAP // The Journal of Biological Chemistry. 2002. Vol. 278. P. 8091-8098.
  • Zwaal R.F., Comfurius P., Bevers E.M. Scott syndrome, a bleeding disorder caused by defective scrambling of membrane phospholipids // Biochim Biophys Acta. 2004. Vol. 1636. P. 119-128.
Еще
Статья научная