Современные подходы к специфической профилактике африканской чумы свиней (обзор)

Автор: Чернышев Р.С., Спрыгин А.В., Иголкин А.С., Жбанова Т.В., Перевозчикова Н.А., Роменская Д.В., Груздев К.Н., Мазлум А.

Журнал: Сельскохозяйственная биология @agrobiology

Рубрика: Обзоры, проблемы

Статья в выпуске: 4 т.57, 2022 года.

Бесплатный доступ

Африканская чума свиней (АЧС), впервые охарактеризованная R.E. Montgomery еще в начале ХХ века (R.E. Montgomery, 1921), уже более 100 лет остается одной из острых проблем в мировом свиноводстве. Поиски эффективных и универсальных средств специфической профилактики во всем мире ведутся с 1933 года (J. Walker, 1933). В представленном обзоре суммированы данные литературы из открытых источников по наиболее важным и успешным событиям в истории разработки вакцин против АЧС, обсуждены перспективы и результаты использования аттенуированных (C. Muñoz-Pérez с соавт., 2021), инактивированных (E. Cadenas-Fernández с соавт., 2021), субъединичных (J.G. Neilan с соавт., 2004) и векторных (J.K. Jancovich с соавт., 2018) вакцин против АЧС. При широком использовании природно ослабленных негемадсорбирующих изолятов в качестве вакцин во второй половине XX века в странах Европы наблюдалось хроническое течение АЧС у значительного числа свиней (J. Manso Ribeiro с соавт., 1963). Несмотря на генетические изменения в геноме вируса, последовательные пассажи полевых изолятов вируса АЧС на различных культурах клеток не показали должного результата в ослаблении вирулентных свойств возбудителя (I. Titov с соавт., 2017). Использование технологий получения делетированных мутантов ASFV-G-ΔI177L создало перспективу для разработки эффективных вакцин-кандидатов (M.V. Borca с соавт., 2020). Показано, что инактивированные, а также субъединичные вакцины на основе рекомбинантных белков, вызывали образование специфических иммуноглобулинов в высоких титрах, однако не обладали протективными свойствами (G. Burmakina с соавт., 2016). Новой вехой в борьбе с многими инфекционными болезнями животных, в частности с АЧС, стали векторные вакцины. Исследования последних лет указывают на перспективу создания эффективных и сертифицированных ДНК-вакцин, среди векторов для разработки которых хорошо себя зарекомендовали аденовирус человека 5 (rAd) и модифицированный вирус осповакцины Анкара (MVA) (L.C. Goatley с соавт., 2020). Аттенуированные вакцины на основе генетически модифицированных вирусов с делецией генов I226R и 18-7GD (Y. Zhang с соавт., 2021; W. Chen с соавт., 2020) нуждаются в экспертизе с привлечением международных организаций для дальнейшей регистрации и внедрения в ветеринарную практику.

Еще

Африканская чума свиней, ачс, вакцина, инактивированная вакцина, аттенуированная вакцина, днк-вакцина, рекомбинантная вакцина, crispr/cas9

Короткий адрес: https://sciup.org/142236345

IDR: 142236345   |   DOI: 10.15389/agrobiology.2022.4.609rus

Список литературы Современные подходы к специфической профилактике африканской чумы свиней (обзор)

  • Urbano A.C., Forth J.H., Olesen A., Dixon L., Rasmussen T., Cackett G., Werner F., Karger A., Andrés G., Wang X., Pérez-Núcez D., Galindo I., Malogolovkin A., Revilla Y., Alonso C., Gallardo C., Blome S., Arabyan E., Zakaryan H., Ferreira F. African swine fever virus: cellular and molecular aspects. In: Understanding and combatting African swine fever. A European perspective /L. Iacolina, M.-L. Penrith, S. Bellini, E. Chenais, F. Jori, M. Montoya, K. Stehl, D. Gavier-Widén (eds.). Wageningen Academic Publishers, 2021: 25-61 (doi: 10.3920/978-90-8686-910-7_2).
  • Dixon L.K., Chapman D.A.G., Netherton C.L., Upton C. African swine fever virus replication and genomics. Virus Research, 2013, 173(1): 3-14 (doi: 10.1016/j.virusres.2012.10.020).
  • Балышев В.М., Болгова М.В., Балышева В.И., Болгова М.В., Князева М.В. Получение типовых задерживающих гемадсорбцию референс-сывороток к вирусу африканской чумы свиней. Вопросы нормативно-правового регулирования в ветеринарии, 2015, 2: 23-25.
  • Quembo C.J., Jori F., Vosloo W., Heath L. Genetic characterization of African swine fever virus isolates from soft ticks at the wildlife/domestic interface in Mozambique and identification of a novel genotype. Transboundary and Emerging Diseases, 2018, 665(2): 420-431 (doi: 10.1111/tbed.12700).
  • Nix R.J., Gallardo C., Hutchings G., Blanco E., Dixon L.K. Molecular epidemiology of African swine fever virus studied by analysis of four variable genome regions. Archives of Virology, 2006, 151(12): 2475-2494 (doi: 10.1007/s00705-006-0794-z).
  • Mazloum A., Igolkin A.S., Vlasova N.N. African swine fever virus: use genetic markers in analysis of its routes of spread. Veterinary Science Today, 2019, 30: 9-14 (doi: 10.29326/2304-196X-2019-3-30-3-8).
  • Beltrán-Alcrudo D., Lubroth J., Depner K., Rocque S. African swine fever in the Caucasus. EMPRES Watch, 2008, 1: 1-8 (doi: 10.13140/RG.2.1.3579.1200).
  • Россельхознадзор. Федеральная служба по ветеринарному и фитосанитарному надзору. Эпизоотическая ситуация по АЧС на территории Российской Федерации в 2007 г. Режим доступа: https://fsvps.gov.ru/fsvps-docs/ru/iac/asf/archive/asf_2007.pdf. Дата обращения: 16.01.2022.
  • Россельхознадзор. Федеральная служба по ветеринарному и фитосанитарному надзору. Эпизоотическая ситуация по АЧС на территории Российской Федерации и стран Восточной Европы. Данные МЭБ с 2007 по 2020 гг. Режим доступа: https://fsvps.gov.ru/fsvps-docs/ru/iac/asf/2020/09-14/05.pdf. Дата обращения: 16.01.2022.
  • Россельхознадзор. Федеральная служба по ветеринарному и фитосанитарному надзору. Эпизоотическая ситуация по АЧС на территории Российской Федерации и странах Европы и Азии. Данные МЭБ с 2007 по 2021 гг. Режим доступа: https://fsvps.gov.ru/fsvps-docs/ru/iac/asf/2022/01- 18/04.pdf. Дата обращения: 18.01.2022.
  • OIE — World Organization for Animal Health. Analytics: Quantitative data. Режим доступа: https://wahis.oie.int/#/dashboards/qd-dashboard. Дата обращения: 18.12.2021.
  • OIE — World Organization for Animal Health. African swine fever (ASF) — Situation report. Report Date: 03.12.2021. Режим доступа: https://www.oie.int/app/uploads/2021/12/report-65-current-situation-of-asf.pdf. Дата обращения: 18.12.2021.
  • Beltrán-Alcrudo D., Arias M., Gallardo C., Kramer S., Penrith M.L. African swine fever: detection and diagnosis — а manual for veterinarians. FAO, 2017.
  • Wilkinson P.J., Pegram R.G., Perry B.D., Lemche J., Schels H.F. The distribution of African swine fever virus isolated from Ornithodoros moubata in Zambia. Epidemiology and Infection, 1988, 101(3): 547-564 (doi: 10.1017/s0950268800029423).
  • Макаров В.В., Сухарев О.И., Цветнова И.В. Эпизоотологическая характеристика вируса африканской чумы свиней. Ветеринарная практика, 2013, 1: 6-16.
  • Макаров В.В. Африканская чума свиней. М., 2011.
  • Escribano J.M., Galindo I., Alonso C. Antibody-mediated neutralization of African swine fever virus: myths and facts. Virus Research, 2013, 173(1): 101-109 (doi: 10.1016/j.virusres.2012.10.012).
  • Gaudreault N., Richt J. Subunit vaccine approaches for African swine fever virus. Vaccines, 2019, 7(2): 56 (doi: 10.3390/vaccines7020056).
  • Halstead S.B., Mahalingam S., Marovich M.A., Ubol S., Mosser D.M. Intrinsic antibody-dependent enhancement of microbial infection in macrophages: disease regulation by immune complexes. The Lancet Infectious Diseases, 2010, 10(10): 712-722 (doi: 10.1016/S1473-3099(10)70166-3).
  • Suhrbier A., La Linn M. Suppression of antiviral responses by antibody-dependent enhancement of macrophage infection. Trends in Immunology, 2003, 24(4): 165-168 (doi: 10.1016/s1471-4906(03)00065-6).
  • Netherton C.L., Goatley L.C., Reis A.L., Portugal R., Nash R.H., Morgan S.B., Gault L., Nieto R., Norlin V., Gallardo C., Ho C.S., Sánchez-Cordón P.J., Taylor G., Dixon L.K. Identification and immunogenicity of african swine fever virus antigens. Front. Immunol., 2019, 10: 1318 (doi: 10.3389/fimmu.2019.01318).
  • Mucoz-Pérez C., Jurado C., Sánchez-Vizcaíno J. African swine fever vaccine: turning a dream into reality. Transboundary and Emerging Diseases, 2021. 68(5): 2657-2668 (doi: 10.1111/tbed.14191).
  • Mendonza C., Videgain S.P., Alonso F. Inhibition of natural killer activity in porcine mononuclear cells by African swine fever virus. Research in Veterinary Science, 1991, 51(3): 317-321 (doi: 10.1016/0034-5288(91)90084-2).
  • Martins C., Lawman M., Schol T., Mebus C., Lunney J. African swine fever virus specific porcine cytotoxic T cell activity. Archives of Virology, 1993, 129(1-4): 211-225 (doi: 10.1007/BF01316896).
  • Ribeiro A.S., Arala-Chaves M.P., Vilanova M., Porto M.T., Coutinho A. Role of B and T lymphocytes in the specific immunosuppression induced by a protein released by porcine monocytes infected with African swine fever virus. International Immunology, 1991, 3(2): 165-74 (doi: 10.1093/intimm/3.2.165).
  • Vilanova M., Ferreira P., Ribeiro A., Arala-Chaves M. The biological effects induced in mice by p36, a proteinaceous factor of virulence produced by African swine fever virus, are mediated by interleukin-4 and also to a lesser extent by interleukin-10. Immunology, 1999, 96(3): 389-395 (doi: 10.1046/j.1365-2567.1999.00629.x).
  • Pershin A., Shevchenko I., Igolkin A., Zhukov I., Mazloum A., Aronova E., Vlasova N., Shev-tsov A. A long-term study of the biological properties of ASF virus isolates originating from various regions of the Russian Federation in 2013-2018. Veterinary Sciences, 2019, 6(4): 99 (doi: 10.3390/vetsci6040099).
  • Zsak L., Onisk D.V., Afonso C.L., Rock D.L. Virulent African swine fever virus isolates are neutralized by swine immune serum and by monoclonal antibodies recognizing a 72-kDa viral protein. Virology, 1993, 196(2): 596-602 (doi: 10.1006/viro.1993.1515).
  • Onisk D.V., Borca M.V., Kutish G., Kramer E., Irusta P., Rock D.L. Passively transferred African swine fever virus antibodies protect swine against lethal infection. Virology, 1994, 198(1): 350-354 (doi: 10.1006/viro.1994.1040).
  • Gómez-Puertas P., Rodríguez F., Oviedo J.M., Ramiro-Ibáñez F., Ruiz-Gonzalvo F., Alonso C., Escribano J.M. Neutralizing antibodies to different proteins of African swine fever virus inhibit both virus attachment and internalization. Journal of Virology, 1996, 70(8): 5689-5694 (doi: 10.1128/JVI.70.8.5689-5694.1996).
  • Alonso C., Miskin J., Hernáez B., Fernandez-Zapatero P., Soto L., Cantó C., Rodríguez-Crespo I., Dixon L., Escribano J.M. African swine fever virus protein p54 interacts with the micro-tubular motor complex through direct binding to light-chain dynein. Journal of Virology, 2001, 75(20): 9819-9827 (doi: 10.1128/JVI.75.20.9819-9827.2001).
  • Hernáez B., Tarragó T., Giralt E., Escribano J.M., Alonso C. Small peptide inhibitors disrupt a high-affinity interaction between cytoplasmic dynein and a viral cargo protein. Journal of Virology, 2010, 84(20): 10792-10801 (doi: 10.1128/JVI.01168-10).
  • Walker J. East African swine fever. University of Zürich, 1933.
  • Stone S.S., DeLay P.D., Sharman E.C. The antibody response in pigs inoculated with attenuated African swine fever virus. Can. J. Comp. Med., 1968, 32(3): 455-460.
  • Hamdy F.M., Dardiri A.H. Clinical and immunologic responses of pigs to African swine fever virus isolated from the Western Hemisphere. American Journal of Veterinary Research, 1984, 45(4): 711-804.
  • Boinas F., Hutchings G., Dixon L., Wilkinson P. Characterization of pathogenic and non-pathogenic African swine fever virus isolates from Ornithodoros erraticus inhabiting pig premises in Portugal. J. Gen. Virol., 2004, 85: 2177-2187 (doi: 10.1099/vir.0.80058-0).
  • Leitäo A., Cartaxeiro C., Coelho R., Cruz B., Parkhouse R., Portugal F.C., Vigário J.D., Martins C.L.V. The non-haemadsorbing African swine fever virus isolate ASFV/NH/P68 provides a model for defining the protective anti-virus immune response. J. Gen. Virol., 2001, 82(3): 513523 (doi: 10.1099/0022-1317-82-3-513).
  • Vigário J.D., Terrinha A.M., Moura Nunes J.F. Antigenic relationships among strains of African swine fever virus. Archiv für die gesamte Virusforschung, 1974, 45(3): 272-277 (doi: 10.1007/BF01249690).
  • King K., Chapman D., Argilaguet J.M., Fishbourne E., Hutet E., Cariolet R., Hutchings G., Oura C.A., Netherton C.L., Moffat K., Taylor G., Le Potier M.F., Dixon L.K., Takamatsu H.H. Protection of European domestic pigs from virulent African isolates of African swine fever virus by experimental immunisation. Vaccine, 2011, 29(28): 4593-4600 (doi: 10.1016/j.vaccine.2011.04.052).
  • Gallardo C., Soler A., Rodze I., Nieto R., Cano-Gómez C., Fernandez-Pinero J., Arias M. Attenuated and non-haemadsorbing (non-HAD) genotype II African swine fever virus (ASFV) isolated in Europe, Latvia 2017. Transboundary and Emerging Diseases, 2019, 66(3): 1399-1404 (doi: 10.1111/tbed.13132).
  • Barasona J.A., Gallardo C., Cadenas-Fernández E., Jurado C., Rivera B., Rodríguez-Bertos A., Arias M., Sánchez-Vizcaíno J.M. First oral vaccination of Eurasian wild boar against African swine fever virus genotype II. Frontiers in Veterinary Science, 2019, 6: 137 (doi: 10.3389/fvets.2019.00137).
  • Barasona J.A., Cadenas-Fernández E., Kosowska A., Barroso-Arévalo S., Rivera B., Sánchez R., Porras N., Gallardo C., Sánchez-Vizcaíno J.M. Safety of African swine fever vaccine candidate Lv17/WB/Rie1 in wild boar: overdose and repeated doses. Frontiers in Immunology, 2021, 12: 761753 (doi: 10.3389/fimmu.2021.761753).
  • Enjuanes L., Carrascosa A.L., Moreno M.A., Vicuela E. Titration of African swine fever (ASF) virus. J. Gen. Virol, 1976, 32(3): 471-477 (doi: 10.1099/0022-1317-32-3-471).
  • Titov I., Burmakina G., Morgunov Y., Morgunov S., Koltsov A., Malogolovkin A., Kolbasov D. Virulent strain of African swine fever virus eclipses its attenuated derivative after challenge. Archives of Virology, 2017, 162(10): 3081-3088 (doi: 10.1007/s00705-017-3471-5).
  • Elsukova A.A., Shevchenko I.V., Varentsova A., Puzankova O.S., Zhukov I.Y., Pershin A.S., Remyga S.G., Zinyakov N.G., Mazloum A., Vlasov I.N., Igolkin A.S., Lozovoy D.A., Gruzdev K.N., Vlasova N.N. Biological properties of African swine fever virus Odintsovo 02/14 isolate and its genome analysis. International Journal of Environmental and Agriculture Research, 2017, 3: 26-37 (doi: 10.25125/agriculture-journal-IJ0EAR-0CT-2017-15).
  • Mazloum A., Zinyakov N.G., Pershin A.S., Shevchenko I.V., Zhukov I.Y., Fedoseyeva D.N., Sharypova D.V., Igolkin A.S., Vlasova N.N. Analysis of changes in African swine fever virus genetic structure and biological properties during adaptation to continuous cell culture. Veterinary Science Today, 2018, 27: 21-25 (doi: 10.29326/2304-196X-2018-4-27-21-25).
  • Dixon L.K., Chapman D.A., Netherton C.L., Upton C. African swine fever virus replication and genomics. Virus Research, 2013, 173(1): 3-14 (doi: 10.1016/j.virusres.2012.10.020).
  • Mazloum A., Igolkin A.S., Zinyakov N.G., Van Schalkwyk A., Vlasova N.N. Changes in the genome of African swine fever virus (Asfarviridae: Asfivirus: African swine fever virus) associated with adaptation to reproduction in continuous cell culture. Вопросы вирусологии, 2021, 66(3): 211-216 (doi: 10.36233/0507-4088-50).
  • Krug P.W., Holinka L.G., O'Donnell V., Reese B., Sanford B., Fernandez-Sainz I., Gladue D.P., Arzt J., Rodriguez L., Risatti G.R., Borca M.V. The progressive adaptation of a Georgian isolate of African swine fever virus to Vero cells leads to a gradual attenuation of virulence in swine corresponding to major modifications of the viral genome. Journal of Virology, 2015, 89(4): 23242332 (doi: 10.1128/JVI.03250-14).
  • O'Donnell V., Risatti G.R., Holinka L.G., Krug P.W., Carlson J., Velazquez-Salinas L., Azzi-naro P.A., Gladue D.P., Borca M.V. Simultaneous deletion of the 9GL and UK genes from the African swine fever virus Georgia 2007 isolate offers increased safety and protection against homologous challenge. Journal of Virology, 2016, 91(1): e01760-16 (doi: 10.1128/JVI.01760-16).
  • Moore D.M., Zsak L., Neilan J.G., Lu Z., Rock D.L. The African swine fever virus thymidine kinase gene is required for efficient replication in swine macrophages and for virulence in swine. Journal of Virology, 1998, 72(12): 10310-10315 (doi: 10.1128/JVI.72.12.10310-10315.1998).
  • Sanford B., Holinka L., O'Donnell V., Krug P., Carlson J., Alfano M., Carrillo C., Wu P., Lowe A., Risatti G., Gladue D., Borca M. Deletion of the thymidine kinase gene induces complete attenuation of the Georgia isolate of African swine fever virus. Virus Research, 2016, 213: 165-171 (doi: 10.1016/j.virusres.2015.12.002).
  • O'Donnell V., Holinka L.G., Gladue D.P., Sanford B., Krug P.W., Lu X., Arzt J., Reese B., Carrillo C., Risatti G.R., Borca M.V. African swine fever virus Georgia isolate harboring deletions of MGF360 and MGF505 genes is attenuated in swine and confers protection against challenge with virulent parental virus. Journal of Virology, 2015, 89(11): 6048-6056 (doi: 10.1128/JVI.00554-15).
  • Lewis T., Zsak L., Burrage T.G., Lu Z., Kutish G.F., Neilan J.G., Rock D.L. An African swine fever virus ERV1-ALR homologue, 9GL, affects virion maturation and viral growth in macrophages and viral virulence in swine. Journal of Virology, 2000, 74(3): 1275-1285 (doi: 10.1128/jvi.74.3.1275-1285.2000).
  • Wu L., Yang B., Yuan X., Hong J., Peng M., Chen J.L., Song Z. Regulation and evasion of host immune response by African swine fever virus. Frontiers in Microbiology, 2021, 12: 698001 (doi: 10.3389/fmicb.2021.698001).
  • Monteagudo P.L., Lacasta A., López E., Bosch L., Collado J., Pina-Pedrero S., Correa-Fiz F., Accensi F., Navas M.J., Vidal E., Bustos M.J., Rodríguez J.M., Gallei A., Nikolin V., Salas M.L., Rodríguez F. BA71ACD2: a new recombinant live attenuated African swine fever virus with cross-protective capabilities. Journal of Virology, 2017, 91(21): e01058-17 (doi: 10.1128/JVI.01058-17).
  • Lopez E., van Heerden J., Bosch-Camys L., Accensi F., Navas M.J., López-Monteagudo P., Argilaguet J., Gallardo C., Pina-Pedrero S., Salas M.L., Salt J., Rodriguez F. Live attenuated African swine fever viruses as ideal tools to dissect the mechanisms involved in cross-protection. Viruses, 2020, 12(12): 1474 (doi: 10.3390/v12121474).
  • Reis A.L., Goatley L.C., Jabbar T., Sanchez-Cordon P.J., Netherton C.L., Chapman D.A.G., Dixon L.K. Deletion of the African swine fever virus gene DP148R does not reduce virus replication in culture but reduces virus virulence in pigs and induces high levels of protection against challenge. Journal of Virology, 2017, 91(24): e01428-17 (doi: 10.1128/JVI.01428-17).
  • Gallardo C., Sánchez E.G., Pérez-Núcez D., Nogal M., de León P., Carrascosa Á.L., Nieto R., Soler A., Arias M.L., Revilla Y. African swine fever virus (ASFV) protection mediated by NH/P68 and NH/P68 recombinant live-attenuated viruses. Vaccine, 2018, 36(19): 2694-2704 (doi: 10.1016/j.vaccine.2018.03.040).
  • Chen W., Zhao D., He X., Liu R., Wang Z., Zhang X., Li F., Shan D., Chen H., Zhang J., Wang L., Wen Z., Wang X., Guan Y., Liu J., Bu Z. A seven-gene-deleted African swine fever virus is safe and effective as a live attenuated vaccine in pigs. Sci. China Life Sci,, 2020, 63(5): 623-634 (doi: 10.1007/s11427-020-1657-9).
  • Borca M.V., Ramirez-Medina E., Silva E., Vuono E., Rai A., Pruitt S., Holinka L.G., Velazquez-Salinas L., Zhu J., Gladue D.P. Development of a highly effective African swine fever virus vaccine by deletion of the I177L gene results in sterile immunity against the current epidemic Eurasia strain. Journal of Virology, 2020, 94: e02017-19 (doi: 10.1128/JVI.02017-19).
  • Borca M.V., Rai A., Ramirez-Medina E., Silva E., Velazquez-Salinas L., Vuono E., Pruitt S., Espinoza N., Gladue D.P. A cell culture-adapted vaccine virus against the current African swine fever virus pandemic strain. Journal of Virology, 2021, 95(14): e0012321 (doi: 10.1128/JVI.00123-21).
  • Borca M.V., Ramirez-Medina E., Silva E., Vuono E., Rai A., Pruitt S., Espinoza N., Velazquez-Salinas L., Gay C.G., Gladue D.P. ASFV-G-AI177L as an effective oral nasal vaccine against the Eurasia strain of Africa swine fever. Viruses, 2021, 13(5): 765 (doi: 10.3390/v13050765).
  • Tran X.H., Le T.T.P., Nguyen Q.H., Do T.T., Nguyen V.D., Gay C.G., Borca M.V., Gladue D.P. African swine fever virus vaccine candidate ASFV-G-AI177L efficiently protects European and native pig breeds against circulating Vietnamese field strain. Transboundary and Emerging Diseases, 2021, 69: e497-e504 (doi: 10.1111/tbed.14329).
  • Zhang Y., Ke J., Zhang J., Yang J., Yue H., Zhou X., Qi Y., Zhu R., Miao F., Li Q., Zhang F., Wang Y., Han X., Mi L., Yang J., Zhang S., Chen T., Hu R. African swine fever virus bearing an I226R gene deletion elicits robust immunity in pigs to African swine fever. Journal of Virology, 2021, 95(23): e0119921 (doi: 10.1128/JVI.01199-21).
  • Stone S.S., Hess W.R. Antibody response to inactivated preparations of African swine fever virus in pigs. American Journal of Veterinary Research, 1967, 28(123): 475-481.
  • Forman A.J., Wardley R.C., Wilkinson P.J. The immunological response of pigs and Guinea pigs to antigens of African swine fever virus. Archives of Virology, 1982, 74(2-3): 91-100 (doi: 10.1007/BF01314703).
  • Bommeli W., Kihm U., Ehrensperger F. Preliminary study on immunization of pigs against African swine fever In: Proceedings of a CEC/FAO Research Seminar, Sassari, Sardinia, Italy, 23-25 September 1981. Sassari, 1981: 217-223.
  • Cadenas-Fernández E., Sánchez-Vizcaíno J.M., van den Born E., Kosowska A., van Kilsdonk E., Fernández-Pacheco P., Gallardo C., Arias M., Barasona J.A. High doses of inactivated African Swine fever virus are safe, but do not confer protection against a virulent challenge. Vaccines, 2021, 9(3): 242 (doi: 10.3390/vaccines9030242).
  • Blome S., Gabriel C., Beer M. Modern adjuvants do not enhance the efficacy of an inactivated African swine fever virus vaccine preparation. Vaccine, 2014, 32(31): 3879-3882 (doi: 10.1016/j.vaccine.2014.05.051).
  • Ruiz-Gonzalvo F., Rodríguez F., Escribano J.M. Functional and immunological properties of the baculovirus-expressed hemagglutinin of African swine fever virus. Virology, 1996, 218(1): 285-289 (doi: 10.1006/viro.1996.0193).
  • Carrascosa A.L., Sastre I., Vicuela E. Production and purification of recombinant African swine fever virus attachment protein p12. Journal of Biotechnology, 1995, 40(2): 73-86 (doi: 10.1016/0168-1656(95)00035-o).
  • Gómez-Puertas P., Rodríguez F., Oviedo J.M., Brun A., Alonso C., Escribano J.M. The African swine fever virus proteins p54 and p30 are involved in two distinct steps of virus attachment and both contribute to the antibody-mediated protective immune response. Virology, 1998, 243(2): 461-471 (doi: 10.1006/viro.1998.9068).
  • Barderas M.G., Rodríguez F., Gómez-Puertas P., Avilés M., Beitia F., Alonso C., Escribano J.M. Antigenic and immunogenic properties of a chimera of two immunodominant African swine fever virus proteins. Archives of Virology, 2001, 146(9): 1681-1691 (doi: 10.1007/s007050170056).
  • Burmakina G., Malogolovkin A., Tulman E.R., Zsak L., Delhon G., Diel D.G., Shobogo-rov N.M., Morgunov Y.P., Morgunov S.Y., Kutish G.F., Kolbasov D., Rock D.L. African swine fever virus serotype-specific proteins are significant protective antigens for African swine fever. J. Gen. Virol., 2016, 97(7): 1670-1675 (doi: 10.1099/jgv.0.000490).
  • Neilan J.G., Zsak L., Lu Z., Burrage T.G., Kutish G.F., Rock D.L. Neutralizing antibodies to African swine fever virus proteins p30, p54, and p72 are not sufficient for antibody-mediated protection. Virology, 2004, 319(2): 337-342 (doi: 10.1016/j.virol.2003.11.011).
  • Argilaguet J.M., Pérez-Martín E., López S., Goethe M., Escribano J.M., Giesow K., Keil G.M., Rodríguez F. BacMam immunization partially protects pigs against sublethal challenge with African swine fever virus. Antiviral Res., 2013, 98(1): 61-65 (doi: 10.1016/j.antiviral.2013.02.005).
  • Argilaguet J.M., Pérez-Martín E., Nofrarías M., Gallardo C., Accensi F., Lacasta A., Mora M., Ballester M., Galindo-Cardiel I., López-Soria S., Escribano J.M., Reche P.A., Rodríguez F. DNA vaccination partially protects against African swine fever virus lethal challenge in the absence of antibodies. PLoS ONE, 2012, 7(9): e40942 (doi: 10.1371/journal.pone.0040942).
  • Cadenas-Fernández E., Sánchez-Vizcaíno J.M., Kosowska A., Rivera B., Mayoral-Alegre F., Rodríguez-Bertos A., Yao J., Bray J., Lokhandwala S., Mwangi W., Barasona J.A. Adenovirus-vectored African swine fever virus antigens cocktail is not protective against virulent arm07 isolate in Eurasian wild boar. Pathogens, 2020, 9(3): 171 (doi: 10.3390/pathogens9030171).
  • Lokhandwala S., Waghela S.D., Bray J., Sangewar N., Charendoff C., Martin C.L., Hassan W.S., Koynarski T., Gabbert L., Burrage T.G., Brake D., Neilan J., Mwangi W. Adenovirus-vectored novel African swine fever virus antigens elicit robust immune responses in swine. PLoS ONE, 2017, 12(5): e0177007 (doi: 10.1371/journal.pone.0177007).
  • Jancovich J.K., Chapman D., Hansen D.T., Robida M.D., Loskutov A., Craciunescu F., Bo-rovkov A., Kibler K., Goatley L., King K., Netherton C.L., Taylor G., Jacobs B., Sykes K., Dixon L.K. Immunization of pigs by DNA Prime and recombinant vaccinia virus boost to identify and rank African swine fever virus immunogenic and protective proteins. Journal of Virology, 2018, 92(8): e02219-17 (doi: 10.1128/JVI.02219-17).
  • Sunwoo S.Y., Pérez-Núñez D., Morozov I., Sánchez E.G., Gaudreault N.N., Trujillo J.D., Mur L., Nogal M., Madden D., Urbaniak K., Kim I.J., Ma W., Revilla Y., Richt J.A. DNAprotein vaccination strategy does not protect from challenge with African swine fever virus Armenia 2007 strain. Vaccines, 2019, 7(1): 12 (doi: 10.3390/vaccines7010012).
  • Goatley L.C., Reis A.L., Portugal R., Goldswain H., Shimmon G.L., Hargreaves Z., Ho C.S., Montoya M., Sánchez-Cordón P.J., Taylor G., Dixon L.K., Netherton C.L. A pool of eight virally vectored African swine fever antigens protect pigs against fatal disease. Vaccines, 2020, 8(2): 234 (doi: 10.3390/vaccines8020234).
  • Hübner A., Petersen B., Keil G.M., Niemann H., Mettenleiter T.C., Fuchs W. Efficient inhibition of African swine fever virus replication by CRISPR/Cas9 targeting of the viral p30 gene (CP204L). Sci. Rep., 2018, 8(1): 1449 (doi: 10.1038/s41598-018-19626-1).
  • Abkallo H.M., Svitek N., Oduor B., Awino E., Henson S.P., Oyola S.O., Mwalimu S., Assad-Garcia N., Fuchs W., Vashee S., Steinaa L. Rapid CRISPR/Cas9 editing of genotype IX African swine fever virus circulating in Eastern and Central Africa. Frontiers in Genetics, 2021, 12: 733674 (doi: 10.3389/fgene.2021.733674).
  • You S., Liu T., Zhang M., Zhao X., Dong Y., Wu B., Wang Y., Li J., Wei X., Shi B. African swine fever outbreaks in China led to gross domestic product and economic losses. Nature Food, 2021, 2: 802-808 (doi: 10.1038/s43016-021-00362-1).
  • Manso Ribeiro J., Nines Petisca J.L., Lopes Frizao F., Sobral M. Vaccination contre la peste porcine africaine. Bulletin de l'Office International des Epizooties, 1963, 80: 921-937.
  • Ramirez-Medina E., Vuono E., Rai A., Pruitt S., Espinoza N., Velazquez-Salinas L., Pina-Pedrero S., Zhu J., Rodriguez F., Borca M.V., Gladue D.P. Deletion of E184L, a putative DIVA target from the pandemic strain of African Swine fever virus, produces a reduction in virulence and protection against virulent challenge. Journal of Virology, 2022, 96(1): e0141921 (doi: 10.1128/JVI.01419-21).
Еще
Статья обзорная