Современные представления об эпидемиологии, клинико-патогенезу, иммунопатологии, дополнительных факторах поддержания воспаления, диагностике, лечению COVID-19 в условиях высокогорья (обзор литературы)

Автор: Алымкулов А.Т., Узаков О.Ж., Атыканов А.О.

Журнал: Бюллетень науки и практики @bulletennauki

Рубрика: Медицинские науки

Статья в выпуске: 2 т.10, 2024 года.

Бесплатный доступ

Выполнен анализ данных по актуальному вопросу - пандемии COVID-19. Интенсивный показатель по инфицированности населения составил 285,5 человек на 10000 населения КР. Доля смертности населения за весь период пандемии в КР составила 0,42 на 1000 человек. Таким образом, аспект влияния климатического региона на исследуемые показатели, является актуальной ввиду высокой вероятности появления новых типов коронавирусов человека.

Ковид-19, климат, высокогорье, среднегорье

Короткий адрес: https://sciup.org/14129854

IDR: 14129854   |   DOI: 10.33619/2414-2948/99/31

Список литературы Современные представления об эпидемиологии, клинико-патогенезу, иммунопатологии, дополнительных факторах поддержания воспаления, диагностике, лечению COVID-19 в условиях высокогорья (обзор литературы)

  • 1. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China // The lancet. 2020. V. 395. №10223. P. 497-506. https://doi.org/10.1016/S0140-6736(20)30183-5
  • Mahase E. Covid-19: WHO declares pandemic because of “alarming levels” of spread, severity, and inaction // Bmj. 2020. V. 368. №8. P. 1036. https://doi.org/10.1136/bmj.m1036
  • Guo Y. R., Cao Q. D., Hong Z. S., Tan Y. Y., Chen S. D., Jin H. J., Yan Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak–an update on the status // Military medical research. 2020. V. 7. P. 1-10. https://doi.org/10.1186/s40779-020-00240-0
  • Chakraborty I., Maity P. COVID-19 outbreak: Migration, effects on society, global environment and prevention // Science of the total environment. 2020. V. 728. P. 138882. https://doi.org/10.1016/j.scitotenv.2020.138882
  • Ye Z. W., Yuan S., Yuen K. S., Fung S. Y., Chan C. P., Jin D. Y. Zoonotic origins of human coronaviruses // International journal of biological sciences. 2020. V. 16. №10. P. 1686. https://doi.org/10.7150%2Fijbs.45472
  • Li H., Liu S. M., Yu X. H., Tang S. L., Tang C. K. Coronavirus disease 2019 (COVID-19): current status and future perspectives // International journal of antimicrobial agents. 2020. V. 55. №5. P. 105951. https://doi.org/10.1016/j.ijantimicag.2020.105951
  • Mackenzie J. S., Smith D. W. COVID-19: a novel zoonotic disease caused by a coronavirus from China: what we know and what we don’t // Microbiology Australia. 2020. V. 41. №1. P. 45-50. https://doi.org/10.1071/MA20013
  • Pan A., Liu L., Wang C., Guo H., Hao X., Wang Q., Wu T. Association of public health interventions with the epidemiology of the COVID-19 outbreak in Wuhan, China // Jama. 2020. V. 323. №19. P. 1915-1923. https://doi.org/10.1001/jama.2020.6130
  • Global guidance for surgical care during the COVID-19 pandemic // Journal of British Surgery. 2020. V. 107. №9. P. 1097-1103. https://doi.org/10.1002/bjs.11646
  • Nuccetelli M., Pieri M., Grelli S., Ciotti M., Miano R., Andreoni M., Bernardini S. SARSCoV- 2 infection serology: a useful tool to overcome lockdown? // Cell Death Discovery. 2020. V. 6. №1. P. 38. https://doi.org/10.1038/s41420-020-0275-2
  • Paules C. I., Marston H. D., Fauci A. S. Coronavirus infections—more than just the common cold // Jama. 2020. V. 323. №8. P. 707-708. https://doi.org/10.1001/jama.2020.0757
  • Pal M., Berhanu G., Desalegn C., Kandi V. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): an update // Cureus. 2020. V. 12. №3. https://doi.org/10.7759/cureus.7423
  • Wang Q., Qiu Y., Li J. Y., Zhou Z. J., Liao C. H., Ge X. Y. A unique protease cleavage site predicted in the spike protein of the novel pneumonia coronavirus (2019-nCoV) potentially related to viral transmissibility // Virologica Sinica. 2020. V. 35. P. 337-339. https://doi.org/10.1007/s12250-020-00212-7
  • Lan J. et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor // Nature. 2020. V. 581. №7807. P. 215-220. https://doi.org/10.1038/s41586-020-2180-5
  • Millet J. K., Whittaker G. R. Host cell proteases: critical determinants of coronavirus tropism and pathogenesis // Virus research. 2015. V. 202. P. 120-134. https://doi.org/10.1016/j.virusres.2014.11.021
  • Wang N., Shang J., Jiang S., Du L. Subunit vaccines against emerging pathogenic human coronaviruses // Frontiers in microbiology. 2020. V. 11. P. 298. https://doi.org/10.3389/fmicb.2020.00298
  • Kim D., Lee J. Y., Yang J. S., Kim J. W., Kim V. N., Chang H. The architecture of SARS-CoV-2 transcriptome // Cell. 2020. V. 181. №4. P. 914-921. e10. https://doi.org/10.1016/j.cell.2020.04.011
  • Duan L., Zheng Q., Zhang H., Niu Y., Lou Y., Wang H. The SARS-CoV-2 spike glycoprotein biosynthesis, structure, function, and antigenicity: implications for the design of spikebased vaccine immunogens // Frontiers in immunology. 2020. V. 11. P. 576622. https://doi.org/10.3389/fimmu.2020.576622
  • Schoeman D., Fielding B. C. Coronavirus envelope protein: current knowledge // Virology journal. 2019. V. 16. №1. P. 1-22. https://doi.org/10.1186/s12985-019-1182-0
  • Chang C. K., Hou M. H., Chang C. F., Hsiao C. D., Huang T. H. The SARS coronavirus nucleocapsid protein–forms and functions // Antiviral research. 2014. V. 103. P. 39-50. https://doi.org/10.1016/j.antiviral.2013.12.009
  • Hoffmann M., Kleine-Weber H., Pöhlmann S. A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells // Molecular cell. 2020. V. 78. №4. P. 779-784. e5. https://doi.org/10.1016/j.molcel.2020.04.022
  • Hayashi T., Ura T., Abiko K., Mandan M., Yaegashi N., Konishi I. Reasons why new coronavirus, SARS-CoV-2 infections are likely to spread // Journal of Genetic Medicine and Gene Therapy. 2020. V. 3. №1. P. 001-003. https://dx.doi.org/10.29328/journal.jgmgt.1001005
  • Wrapp D., Wang N., Corbett K. S., Goldsmith J. A., Hsieh C. L., Abiona O., McLellan J. S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation // Science. 2020. V. 367. №6483. P. 1260-1263.
  • Li F, Li W, Farzan M, Harrison S. C. Structure of SARS coronavirus spike receptorbinding domain complexed with receptor.Science. 2005. September 16;309(5742):1864–1868. https://doi.org/10.1126/science.abb2507
  • Park J. E., Li K., Barlan A., Fehr A. R., Perlman S., McCray Jr P. B., Gallagher T. Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism // Proceedings of the National Academy of Sciences. 2016. V. 113. №43. P. 12262-12267. https://doi.org/10.1073/pnas.1608147113
  • Zhou P., Yang X. L., Wang X. G., Hu B., Zhang L., Zhang W., Shi Z. L A pneumonia outbreak associated with a new coronavirus of probable bat origin // Nature. 2020. V. 579. №7798. P. 270-273. https://doi.org/10.1038/s41586-020-2012-7
  • Hamming I., Timens W., Bulthuis M. L. C., Lely A. T., Navis G. V., van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis // The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland. 2004. V. 203. №2. P. 631-637. https://doi.org/10.1002/path.1570
  • Watanabe Y., Bowden T. A., Wilson I. A., Crispin M. Exploitation of glycosylation in enveloped virus pathobiology // Biochimica et Biophysica Acta (BBA)-General Subjects. 2019. V. 1863. №10. P. 1480-1497. https://doi.org/10.1016/j.bbagen.2019.05.012
  • Barile E., Baggio C., Gambini L., Shiryaev S. A., Strongin A. Y., Pellecchia M. Potential therapeutic targeting of coronavirus spike glycoprotein priming // Molecules. 2020. V. 25. №10. P. 2424. https://doi.org/10.3390/molecules25102424
  • Tang T., Bidon M., Jaimes J. A., Whittaker G. R., Daniel S. Coronavirus membrane fusion mechanism offers a potential target for antiviral development // Antiviral research. 2020. V. 178. P. 104792. https://doi.org/10.1016/j.antiviral.2020.104792
  • Astuti I. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response // Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2020. V. 14. №4. P. 407-412. https://doi.org/10.1016/j.dsx.2020.04.020
  • Liu J., Zheng X., Tong Q., Li W., Wang B., Sutter K., Yang D. Overlapping and discrete aspects of the pathology and pathogenesis of the emerging human pathogenic coronaviruses SARS-CoV, MERS‐CoV, and 2019‐nCoV // Journal of medical virology. 2020. V. 92. №5. P. 491-494. https://doi.org/10.1002/jmv.25709
  • Sorci G., Faivre B., Morand S. Explaining among-country variation in COVID-19 case fatality rate // Scientific reports. 2020. V. 10. №1. P. 18909. https://doi.org/10.1038/s41598-020-75848-2
  • Riou J., Althaus C. L. Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020 // Eurosurveillance. 2020. V. 25. №4. P. 2000058. https://doi.org/10.2807/1560-7917.es.2020.25.7.20200220c
  • Zhao S., Lin Q., Ran J., Musa S. S., Yang G., Wang W., Wang M. H. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak // International journal of infectious diseases. 2020. V. 92. P. 214-217. https://doi.org/10.1016/j.ijid.2020.01.050
  • Zhou T., Liu Q., Yang Z., Liao J., Yang K., Bai W., Zhang W. Preliminary prediction of the basic reproduction number of the Wuhan novel coronavirus 2019‐nCoV // Journal of Evidence‐ Based Medicine. 2020. V. 13. №1. P. 3-7. https://doi.org/10.1111/jebm.12376
  • Chan J. F. W., Yuan S., Kok K. H., To K. K. W., Chu H., Yang J., Yuen K. Y. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster // The lancet. 2020. V. 395. №10223. P. 514-523. https://doi.org/10.1016/S0140-6736(20)30154-9
  • Okada P., Phuygun S., Thanadachakul T., Parnmen S., Wongboot W., Waicharoen S., Maurer-Stroh S. Early transmission patterns of coronavirus disease 2019 (COVID-19) in travelers from Wuhan to Thailand, January 2020 // Eurosurveillance. 2020. V. 25. №8. P. 2000097. https://doi.org/10.2807/1560-7917.ES.2020.25.8.2000097
  • Zou L., Ruan F., Huang M., Liang L., Huang H., Hong Z., Wu J. SARS-CoV-2 viral load in upper respiratory specimens of infected patients // New England journal of medicine. 2020. V. 382. №12. P. 1177-1179. https://doi.org/10.1056/NEJMc2001737
  • Li Q., Guan X., Wu P., Wang X., Zhou L., Tong Y., Feng Z. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia // New England journal of medicine. 2020. V. 382. №13. P. 1199-1207. https://doi.org/10.1056/NEJMoa2001316
  • Zhang Y., Chen C., Zhu S., Shu C., Wang D., Song J., Xu W. Isolation of 2019-nCoV from a stool specimen of a laboratory-confirmed case of the coronavirus disease 2019 (COVID-19) // China CDC weekly. 2020. V. 2. №8. P. 123-124. https://weekly.chinacdc.cn/en/article/doi/10.46234/ccdcw2020.033
  • Karimi-Zarchi M., Neamatzadeh H., Dastgheib S. A., Abbasi H., Mirjalili S. R., Behforouz A., Bahrami R. Vertical transmission of coronavirus disease 19 (COVID-19) from infected pregnant mothers to neonates: a review // Fetal and pediatric pathology. 2020. V. 39. №3. P. 246-250. https://doi.org/10.1080/15513815.2020.1747120
  • Alzamora M. C., Paredes T., Caceres D., Webb C., Valdez L., Huang C., Moss T. Severe COVID-19 during pregnancy and possible vertical transmission // American journal of perinatology. 2020. V. 37. №08. P. 861-865. https://doi.org/10.1055/s-0040-1710050
  • Kalyanasundaram S., Krishnamurthy K., Sridhar A., Narayanan V. K., Rajendra Santosh A. B., Rahman S. Novel corona virus pandemic and neonatal care: it’s too early to speculate on impact! // SN Comprehensive Clinical Medicine. 2020. V. 2. №9. P. 1412-1418. https://doi.org/10.1007/s42399-020-00440-8
  • Martínez-Perez O., Vouga M., Melguizo S. C., Acebal L. F., Panchaud A., Muñoz- Chápuli M., Baud D. Association between mode of delivery among pregnant women with COVID-19 and maternal and neonatal outcomes in Spain // Jama. 2020. V. 324. №3. P. 296-299. https://doi.org/10.1001/jama.2020.10125
  • Dong L. et al. Possible vertical transmission of SARS-CoV-2 from an infected mother to her newborn // Jama. 2020. V. 323. №18. P. 1846-1848. https://doi.org/10.1001/jama.2020.4621
  • Chen Y., Peng H., Wang L., Zhao Y., Zeng L., Gao H., Liu Y. Infants born to mothers with a new coronavirus (COVID-19) // Frontiers in pediatrics. 2020. V. 8. P. 104.
  • Arnaez J., Montes M. T., Herranz-Rubia N., Garcia-Alix A. The impact of the current SARS-CoV-2 pandemic on neonatal care // Frontiers in Pediatrics. 2020. V. 8. P. 247. https://doi.org/10.3389/fped.2020.00247
  • Yi Y., Lagniton P. N., Ye S., Li E., Xu R. H. COVID-19: what has been learned and to be learned about the novel coronavirus disease // International journal of biological sciences. 2020. V. 16. №10. P. 1753. https://doi.org/10.7150%2Fijbs.45134
  • Hoffmann M. et al. The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells //BioRxiv. – 2020. – С. 2020.01. 31.929042. https://doi.org/10.1101/2020.01.31.929042
  • Lin L., Lu L., Cao W., Li T. Hypothesis for potential pathogenesis of SARS-CoV-2 infection–a review of immune changes in patients with viral pneumonia // Emerging microbes & infections. 2020. V. 9. №1. P. 727-732. https://doi.org/10.1080/22221751.2020.1746199
  • Wu Y., Huang X., Sun J., Xie T., Lei Y., Muhammad J., Zhang Q. Clinical characteristics and immune injury mechanisms in 71 patients with COVID-19 // Msphere. 2020. V. 5. №4. P. 10.1128/msphere. 00362-20. https://doi.org/10.1128/msphere.00362-20
  • Coccia E. M., Battistini A. Early IFN type I response: Learning from microbial evasion strategies // Seminars in immunology. Academic Press, 2015. V. 27. №2. P. 85-101. https://doi.org/10.1016/j.smim.2015.03.005
  • Hu G., Christman J. W. Alveolar macrophages in lung inflammation and resolution // Frontiers in immunology. 2019. V. 10. P. 2275. https://doi.org/10.3389/fimmu.2019.02275
  • Abdulkhaleq L. A., Assi M. A., Abdullah R., Zamri-Saad M., Taufiq-Yap Y. H., Hezmee M. N. M. The crucial roles of inflammatory mediators in inflammation: A review // Veterinary world. 2018. V. 11. №5. P. 627. https://doi.org/10.14202%2Fvetworld.2018.627-635
  • Fahey E., Doyle S. L. IL-1 family cytokine regulation of vascular permeability and angiogenesis // Front Immunol. 2019. V. 10. P. 1426.
  • Gonzales J. N., Lucas R., Verin A. D. The acute respiratory distress syndrome: mechanisms and perspective therapeutic approaches // Austin journal of vascular medicine. 2015. V. 2. №1.
  • Rahman S., Montero M. T. V., Rowe K., Kirton R., Kunik Jr, F. Epidemiology, pathogenesis, clinical presentations, diagnosis and treatment of COVID-19: a review of current evidence // Expert review of clinical pharmacology. 2021. V. 14. №5. P. 601-621. https://doi.org/10.1080/17512433.2021.1902303
  • Bustin S. A., Mueller R. Real-time reverse transcription PCR (qRT-PCR) and its potential use in clinical diagnosis // Clinical Science. 2005. V. 109. №4. P. 365-379. https://doi.org/10.1042/CS200500860050086
  • Tang Y. W., Schmitz J. E., Persing D. H., Stratton C. W. Laboratory diagnosis of COVID- 19: current issues and challenges // Journal of clinical microbiology. 2020. V. 58. №6. P. 10.1128/jcm. 00512-20. https://doi.org/10.1128/jcm.00512-20
  • Peeling R. W., Wedderburn C. J., Garcia P. J., Boeras D., Fongwen N., Nkengasong J., Heymann D. L. Serology testing in the COVID-19 pandemic response // The Lancet Infectious Diseases. 2020. V. 20. №9. P. e245-e249. https://doi.org/10.1016/S1473-3099(20)30517-X
  • Freeman B., Lester S., Mills L., Rasheed M. A. U., Moye S., Abiona O., Thornburg N. J. Validation of a SARS-CoV-2 spike protein ELISA for use in contact investigations and serosurveillance // Biorxiv. 2020. https://doi.org/10.1101%2F2020.04.24.057323
  • Ospina-Tascon G. A., Calderón-Tapia L. E., García A. F., Zarama V., Gómez-Álvarez F., Álvarez-Saa T., .Effect of high-flow oxygen therapy vs conventional oxygen therapy on invasive mechanical ventilation and clinical recovery in patients with severe COVID-19: a randomized clinical trial // Jama. 2021. V. 326. №21. P. 2161-2171. https://doi.org/10.1001/jama.2021.20714
  • Carfì A., Bernabei R., Landi F. Persistent symptoms in patients after acute COVID-19 // Jama. 2020. V. 324. №6. P. 603-605. https://doi.org/10.1001/jama.2020.12603
  • Halpin S. J., McIvor C., Whyatt G., Adams A., Harvey O., McLean L., Sivan M. Postdischarge symptoms and rehabilitation needs in survivors of COVID‐19 infection: A crosssectional evaluation // Journal of medical virology. 2021. V. 93. №2. P. 1013-1022. https://doi.org/10.1002/jmv.26368
  • Bowles K. H., McDonald M., Barron Y., Kennedy E., O’Connor M., & Mikkelsen M. Surviving COVID-19 after hospital discharge: symptom, functional, and adverse outcomes of home health recipients // Annals of internal medicine. 2021. V. 174. №3. P. 316-325. https://doi.org/10.7326/M20-5206
  • Wilder-Smith A., Freedman D. O. Isolation, quarantine, social distancing and community containment: pivotal role for old-style public health measures in the novel coronavirus (2019- nCoV) outbreak // Journal of travel medicine. 2020. V. 27. №2. P. taaa020. https://doi.org/10.1093/jtm/taaa020
  • Güner H. R., Hasanoğlu İ., Aktaş F. COVID-19: Prevention and control measures in community // Turkish Journal of medical sciences. 2020. V. 50. №9. P. 571-577. https://doi.org/10.3906/sag-2004-146
  • Cirrincione L., Plescia F., Ledda C., Rapisarda V., Martorana D., Moldovan R. E., Cannizzaro E. COVID-19 pandemic: Prevention and protection measures to be adopted at the workplace // Sustainability. 2020. V. 12. №9. P. 3603. https://doi.org/10.3390/su12093603
  • Yao J. S., Paguio J. A., Dee E. C., Tan H. C., Moulick A., Milazzo C., Celi L. A. The minimal effect of zinc on the survival of hospitalized patients with COVID-19: an observational study // Chest. 2021. V. 159. №1. P. 108-111. https://doi.org/10.1016/j.chest.2020.06.082
  • Krause P., Fleming T. R., Longini I., Henao-Restrepo A. M., Peto R., Dean N. E., Henao- Restrepo A. M. COVID-19 vaccine trials should seek worthwhile efficacy // The Lancet. 2020. V. 396. №10253. P. 741-743. https://doi.org/10.1016/S0140-6736(20)31821-3
  • Koo J. R., Cook A. R., Park M., Sun Y., Sun H., Lim J. T., Dickens B. L. Interventions to mitigate early spread of SARS-CoV-2 in Singapore: a modelling study // The Lancet Infectious Diseases. 2020. V. 20. №6. P. 678-688. https://doi.org/10.1016/S1473-3099(20)30162-6
  • Rodriguez-Morales A. J., Cardona-Ospina J. A., Gutiérrez-Ocampo E., Villamizar-Peña R., Holguin-Rivera Y., Escalera-Antezana J. P., Sah R. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis // Travel medicine and infectious disease. 2020. V. 34. P. 101623. https://doi.org/10.1016/j.tmaid.2020.101623
  • Shim E., Tariq A., Choi W., Lee Y., Chowell G.Transmission potential and severity of COVID-19 in South Korea // International Journal of Infectious Diseases. 2020. V. 93. P. 339-344. https://doi.org/10.1016/j.ijid.2020.03.031
  • Bavli I., Sutton B., Galea S. Harms of public health interventions against covid-19 must not be ignored // Bmj. 2020. V. 371. https://doi.org/10.1136/bmj.m4074
  • Iwasaki A., Grubaugh N. D. Why does Japan have so few cases of COVID‐19? // EMBO molecular medicine. 2020. V. 12. №5. P. e12481. https://doi.org/10.15252/emmm.202012481
  • Felsenstein S., Herbert J. A., McNamara P. S., Hedrich C. M. COVID-19: Immunology and treatment options // Clinical immunology. 2020. V. 215. P. 108448. https://doi.org/10.1016/j.clim.2020.108448
  • Vabret N., Britton G. J., Gruber C., Hegde S., Kim J., Kuksin M., Laserson U. Immunology of COVID-19: current state of the science // Immunity. 2020. V. 52. №6. P. 910-941. https://doi.org/10.1016/j.immuni.2020.05.002
  • Chuan Q., Luoqi Z., Ziwei H., Shuoqi Z., Sheng Y., Yu T., Dai-Shi T. Dysregulation of immune response in patients with COVID-19 in Wuhan, China // Clin Infect Dis. 2020. V. 10.
  • Tan M., Liu Y., Zhou R., Deng X., Li F., Liang K., Shi Y. Immunopathological characteristics of coronavirus disease 2019 cases in Guangzhou, China // Immunology. 2020. V. 160. №3. P. 261-268. https://doi.org/10.1111/imm.13223
  • Diao B., Wang C., Tan Y., Chen X., Liu Y., Ning L., Chen Y. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19) // Frontiers in immunology. 2020. P. 827. https://doi.org/10.3389/fimmu.2020.00827
  • Wan S., Xiang Y. I., Fang W., Zheng Y., Li B., Hu Y., Yang R. Clinical features and treatment of COVID‐19 patients in northeast Chongqing // Journal of medical virology. 2020. V. 92. №7. P. 797-806. https://doi.org/10.1002/jmv.25783
  • Haveri A., Smura T., Kuivanen S., Österlund P., Hepojoki J., Ikonen N., Savolainen- Kopra C. Serological and molecular findings during SARS-CoV-2 infection: the first case study in Finland, January to February 2020 // Eurosurveillance. 2020. V. 25. №11. P. 2000266. https://doi.org/10.2807/1560-7917.ES.2020.25.11.2000266
  • Lou B., Li T. D., Zheng S. F., Su Y. Y., Li Z. Y., Liu W., Chen Y. Serology characteristics of SARS-CoV-2 infection after exposure and post-symptom onset // European Respiratory Journal. 2020. V. 56. №2. https://doi.org/10.1183/13993003.00763-2020
  • Wu Y. C., Chen C. S., Chan Y. J. The outbreak of COVID-19: An overview // Journal of the Chinese medical association. 2020. V. 83. №3. P. 217. https://doi.org/10.1097%2FJCMA.0000000000000270
  • McGonagle D., Sharif K., O'Regan A., Bridgewood C. The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease // Autoimmunity reviews. 2020. V. 19. №6. P. 102537. https://doi.org/10.1016/j.autrev.2020.102537
  • Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China // The lancet. 2020. V. 395. №10223. P. 497-506. https://doi.org/10.1016/S0140-6736(20)30183-5
  • Wang F., Nie J., Wang H., Zhao Q., Xiong Y., Deng L., Zhang Y. Characteristics of peripheral lymphocyte subset alteration in COVID-19 pneumonia // The Journal of infectious diseases. 2020. V. 221. №11. P. 1762-1769. https://doi.org/10.1093/infdis/jiaa150
  • Tufan A., Güler A. A., Matucci-Cerinic M. COVID-19, immune system response, hyperinflammation and repurposingantirheumatic drugs // Turkish journal of medical sciences. 2020. V. 50. №9. P. 620-632. https://doi.org/10.3906/sag-2004-168
  • Crayne C. B., Albeituni S., Nichols K. E., Cron R. Q.The immunology of macrophage activation syndrome // Frontiers in immunology. 2019. V. 10. P. 119. https://doi.org/10.3389/fimmu.2019.00119
  • Anka A. U., Tahir M. I., Abubakar S. D., Alsabbagh M., Zian Z., Hamedifar H., Azizi G. Coronavirus disease 2019 (COVID‐19): An overview of the immunopathology, serological diagnosis and management // Scandinavian journal of immunology. 2021. V. 93. №4. P. e12998. https://doi.org/10.1111/sji.12998
  • Ye Q., Wang B., Mao J. The pathogenesis and treatment of theCytokine Storm'in COVID- 19 // Journal of infection. 2020. V. 80. №6. P. 607-613. https://doi.org/10.1016/j.jinf.2020.03.037
  • Law H. K., Cheung C. Y., Ng H. Y., Sia S. F., Chan Y. O., Luk W., Lau Y. L. Chemokine up-regulation in SARS-coronavirus–infected, monocyte-derived human dendritic cells // Blood. 2005. V. 106. №7. P. 2366-2374. https://doi.org/10.1182/blood-2004-10-4166
  • Tynell J., Westenius V., Rönkkö E., Munster V. J., Melen K., Österlund P., Julkunen, I. Middle East respiratory syndrome coronavirus shows poor replication but significant induction of antiviral responses in human monocyte-derived macrophages and dendritic cells // The Journal of general virology. 2016. V. 97. №Pt 2. P. 344. https://doi.org/10.1099%2Fjgv.0.000351
  • Scheuplein V. A., Seifried J., Malczyk A. H., Miller L., Höcker L., Vergara-Alert J., Mühlebach M. D. High secretion of interferons by human plasmacytoid dendritic cells upon recognition of Middle East respiratory syndrome coronavirus // Journal of virology. 2015. V. 89. №7. P. 3859-3869. https://doi.org/10.1128/jvi.03607-14
  • Kim E. S., Choe P. G., Park W. B., Oh H. S., Kim E. J., Nam E. Y., Oh M. D. Clinical progression and cytokine profiles of Middle East respiratory syndrome coronavirus infection // Journal of Korean medical science. 2016. V. 31. №11. P. 1717-1725. https://doi.org/10.3346/jkms.2016.31.11.1717
  • Wang C. H., Liu C. Y., Wan Y. L., Chou C. L., Huang K. H., Lin H. C., Kuo H. P. Persistence of lung inflammation and lung cytokines with high-resolution CT abnormalities during recovery from SARS // Respiratory research. 2005. V. 6. P. 1-12. https://doi.org/10.1186/1465-9921-6-42
  • García-Sastre A., Biron C. A. Type 1 interferons and the virus-host relationship: a lesson in detente // Science. 2006. V. 312. №5775. P. 879-882. https://doi.org/10.1126/science.1125676
  • Channappanavar R., Fehr A. R., Zheng J., Wohlford-Lenane C., Abrahante J. E., Mack, M., Perlman S. IFN-I response timing relative to virus replication determines MERS coronavirus infection outcomes // The Journal of clinical investigation. 2019. V. 129. №9. P. 3625-3639. https://doi.org/10.1172/JCI126363
  • Coperchini F., Chiovato L., Croce L., Magri F., Rotondi M. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system // Cytokine & growth factor reviews. 2020. V. 53. P. 25-32. https://doi.org/10.1016/j.cytogfr.2020.05.003
  • Channappanavar R., Fehr A. R., Vijay R., Mack M., Zhao J., Meyerholz D. K., Perlman S. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice // Cell host & microbe. 2016. V. 19. №2. P. 181-193. http://dx.doi.org/10.1016/j.chom.2016.01.007
  • Högner K., Wolff T., Pleschka S., Plog S., Gruber A. D., Kalinke U., Herold S. Macrophage-expressed IFN-β contributes to apoptotic alveolar epithelial cell injury in severe influenza virus pneumonia // PLoS pathogens. 2013. V. 9. №2. P. e1003188. https://doi.org/10.1371/journal.ppat.1003188
  • Rodrigue-Gervais I. G., Labbé K., Dagenais M., Dupaul-Chicoine J., Champagne C., Morizot A., Saleh M. Cellular inhibitor of apoptosis protein cIAP2 protects against pulmonary tissue necrosis during influenza virus infection to promote host survival // Cell host & microbe. 2014. V. 15. №1. P. 23-35. http://dx.doi.org/10.1016%2Fj.chom.2013.12.003
  • Wu F., Zhao S., Yu B., Chen Y. M., Wang W., Song Z. G., Zhang Y. Z. A new coronavirus associated with human respiratory disease in China // Nature. 2020. V. 579. №7798. P. 265-269. https://doi.org/10.1038/s41586-020-2008-3
  • Du Y., Tu L., Zhu P., Mu M., Wang R., Yang P., Xu G. Clinical features of 85 fatal cases of COVID-19 from Wuhan. A retrospective observational study // American journal of
  • respiratory and critical care medicine. 2020. V. 201. №11. P. 1372-1379. https://doi.org/10.1164/rccm.202003-0543OC
  • Cao X. COVID-19: immunopathology and its implications for therapy // Nature reviews immunology. 2020. V. 20. №5. P. 269-270. https://doi.org/10.1038/s41577-020-0308-3
  • Xu, Z., Shi, L., Wang, Y., Zhang, J., Huang, L., Zhang, C., ... & Wang, F. S. Pathological findings of COVID-19 associated with acute respiratory distress syndrome // The Lancet respiratory medicine. 2020. V. 8. №4. P. 420-422. https://doi.org/10.1016/S2213-2600(20)30076-X
  • Wang D., Hu B., Hu C., Zhu F., Liu X., Zhang J., Peng Z. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China // Jama. 2020. V. 323. №11. P. 1061-1069. https://doi.org/10.1001/jama.2020.1585
  • Li Y. X., Wu W., Yang T., Zhou W., Fu Y. M., Feng Q. M., Ye J. M. Characteristics of peripheral blood leukocyte differential counts in patients with COVID-19 // Zhonghua nei ke za zhi. 2020. V. 59. №5. P. 372-374. https://doi.org/10.3760/cma.j.cn112138-20200221-00114
  • Lindsley A. W., Schwartz J. T., Rothenberg M. E. Eosinophil responses during COVID- 19 infections and coronavirus vaccination // Journal of Allergy and Clinical Immunology. 2020. V 146. №1. P. 1-7. https://doi.org/10.1016%2Fj.jaci.2020.04.021
  • Tabachnikova A., Chen S. T. Roles for eosinophils and basophils in COVID-19? // Nature Reviews Immunology. 2020. V. 20. №8. P. 461-461. https://doi.org/10.1038/s41577-020-0379-1
  • Xiang-Hua Y., Le-Min W., Ai-Bin L., Zhu G., Riquan L., Xu-You Z., Ye-Nan W.Severe acute respiratory syndrome and venous thromboembolism in multiple organs // American journal of respiratory and critical care medicine. 2010. V. 182. №3. P. 436-437. https://doi.org/10.1164/ajrccm.182.3.436
  • Zhang Y., Xiao M., Zhang S., Xia P., Cao W., Jiang W., Zhang S. Coagulopathy and antiphospholipid antibodies in patients with Covid-19 // New England Journal of Medicine. 2020. V. 382. №17. P. e38. https://doi.org/10.1056/NEJMc2007575
  • Levi M., Nieuwdorp M., van der Poll T., Stroes E. Metabolic modulation of inflammation-induced activation of coagulation // Seminars in thrombosis and hemostasis // Thieme Medical Publishers. 2008. V. 34. №01. P. 026-032. https://doi.org/10.1055/s-2008-1066020
  • Imai Y., Kuba K., Neely G. G., Yaghubian-Malhami R., Perkmann T., van Loo G., Penninger J. M. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury // Cell. 2008. V. 133. №2. P. 235-249. https://doi.org/10.1016/j.cell.2008.02.043
  • Hamming I., Timens W., Bulthuis M. L. C., Lely A. T., Navis G. V., van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis // The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland. 2004. V. 203. №2. P. 631-637. https://doi.org/10.1002/path.1570
  • Chen L., Li X., Chen M., Feng Y., Xiong C. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2 // Cardiovascular research. 2020. V. 116. №6. P. 1097-1100. https://doi.org/10.1093/cvr/cvaa078
  • CDC Covid-19 Response Team et al. Coronavirus disease 2019 in children—United States, february 12–april 2, 2020 // Morbidity and Mortality Weekly Report. 2020. V. 69. №14. P. 422-426.
  • Verdoni L., Mazza A., Gervasoni A., Martelli L., Ruggeri M., Ciuffreda M., D'Antiga L. An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: an observational cohort study // The Lancet. 2020. V. 395. №10239. P. 1771-1778. https://doi.org/10.1016/S0140-6736(20)31103-X
  • Viner R. M., Whittaker E. Kawasaki-like disease: emerging complication during the COVID-19 pandemic // The Lancet. 2020. V. 395. №10239. P. 1741-1743. https://doi.org/10.1016/S0140-6736(20)31129-6
  • Kato H., Sugimura T., Akagi T., Sato N., Hashino K., Maeno Y., Yamakawa R. Longterm consequences of Kawasaki disease: a 10-to 21-year follow-up study of 594 patients // Circulation. 1996. V. 94. №6. P. 1379-1385. https://doi.org/10.1161/01.CIR.94.6.1379
  • Aykac K., Ozsurekci Y., Yayla B. C. C., Gurlevik S. L., Oygar P. D., Bolu N. B., Ceyhan M. Oxidant and antioxidant balance in patients with COVID‐19 // Pediatric pulmonology. 2021. V. 56. №9. P. 2803-2810. https://doi.org/10.1002/ppul.25549
  • Cecchini R., Cecchini A. L. SARS-CoV-2 infection pathogenesis is related to oxidative stress as a response to aggression // Medical hypotheses. 2020. V. 143. P. 110102. https://doi.org/10.1016/j.mehy.2020.110102
  • Pincemail J., Cavalier E., Charlier C., Cheramy–Bien J. P., Brevers E., Courtois A., Rousseau A. F. Oxidative stress status in COVID-19 patients hospitalized in intensive care unit for severe pneumonia. A pilot study // Antioxidants. 2021. V. 10. №2. P. 257. https://doi.org/10.3390/antiox10020257
  • Karkhanei B., Ghane E. T., Mehri F. Evaluation of oxidative stress level: Total antioxidant capacity, total oxidant status and glutathione activity in patients with COVID-19 // New Microbes and New Infections. 2021. V. 42. P. 100897. https://doi.org/10.1016/j.nmni.2021.100897
  • Gadotti A. C., Lipinski A. L., Vasconcellos F. T., Marqueze L. F., Cunha E. B., Campos A. C., Pinho R. A. Susceptibility of the patients infected with Sars-Cov2 to oxidative stress and possible interplay with severity of the disease // Free Radical Biology and Medicine. 2021. V. 165. P. 184-190. https://doi.org/10.1016/j.freeradbiomed.2021.01.044
  • Martín-Fernández M., Aller R., Heredia-Rodríguez M., Gómez-Sánchez E., Martínez- Paz P., Gonzalo-Benito H., Tamayo-Velasco Á. Lipid peroxidation as a hallmark of severity in COVID-19 patients // Redox Biology. 2021. V. 48. P. 102181. https://doi.org/10.1016/j.redox.2021.102181
  • Sena C. M., Leandro A., Azul L., Seica R., Perry G. Vascular oxidative stress: impact and therapeutic approaches // Frontiers in physiology. 2018. V. 9. P. 1668. https://doi.org/10.3389/fphys.2018.01668
  • Suhail S., Zajac J., Fossum C., Lowater H., McCracken C., Severson N., Hati S.. Role of oxidative stress on SARS-CoV (SARS) and SARS-CoV-2 (COVID-19) infection: a review // The protein journal. 2020. V. 39. P. 644-656. https://doi.org/10.1007/s10930-020-09935-8
  • Lovren F., Pan Y., Quan A., Teoh H., Wang G., Shukla P. C., Verma S. Angiotensin converting enzyme-2 confers endothelial protection and attenuates atherosclerosis // American Journal of Physiology-Heart and Circulatory Physiology. 2008. V. 295. №4. P. H1377-H1384. https://doi.org/10.1152/ajpheart.00331.2008
  • Daiber A., Hahad O., Andreadou I., Steven S., Daub S., Münzel T. Redox-related biomarkers in human cardiovascular disease-classical footprints and beyond // Redox biology.2021. V. 42. P. 101875. https://doi.org/10.1016/j.redox.2021.101875
  • Chen X., Kang R., Kroemer G., Tang D. Broadening horizons: the role of ferroptosis in cancer // Nature reviews Clinical oncology. 2021. V. 18. №5. P. 280-296. https://doi.org/10.1038/s41571-020-00462-0
  • Chang Y. T., Chang W. N., Tsai N. W., Huang C. C., Kung C. T., Su Y. J., Lu C. H. The roles of biomarkers of oxidative stress and antioxidant in Alzheimer’s disease: a systematic review // BioMed research international. 2014. V. 2014. https://doi.org/10.1155/2014/182303
  • Notarnicola M., Osella A. R., Caruso M. G., Pesole P. L., Lippolis A., Tutino V., Messa C. Nonalcoholic fatty liver disease: Focus on new biomarkers and lifestyle interventions // International Journal of Molecular Sciences. 2021. V. 22. №8. P. 3899. https://doi.org/10.3390/ijms22083899
  • Gonzalo Benito H., Brieva Ruiz L., Tatzber F., Jové Font M., Cacabelos Barral D., Cassanyé A., Portero Otín M. Lipidome analysis in multiple sclerosis reveals protein lipoxidative damage as a potential pathogenic mechanism // Journal of Neurochemistry. 2012. V. 123. №4. P. 622-634. http://hdl.handle.net/10459.1/58574
  • Paliogiannis P., Fois A. G., Sotgia S., Mangoni A. A., Zinellu E., Pirina P., Zinellu A.Circulating malondialdehyde concentrations in patients with stable chronic obstructive pulmonary disease: A systematic review and meta-analysis // Biomarkers in Medicine. 2018. V. 12. №7. P. 771-781. https://doi.org/10.2217/bmm-2017-0420
  • Chan-Yeung M., Xu R. H. SARS: epidemiology. Respirology 8 (Suppl): S9–S14. 2003.
  • Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsen S., Pöhlmann S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor // Cell. 2020. V. 181. №2. P. 271-280. e8. https://doi.org/10.1016/j.cell.2020.02.052
  • Magalhães G. S., Rodrigues‐Machado M. G., Motta‐Santos D., Silva A. R., Caliari M. V., Prata L. O., Campagnole‐Santos M. J. A ngiotensin‐(1‐7) attenuates airway remodelling and hyperresponsiveness in a model of chronic allergic lung inflammation // British Journal of Pharmacology. 2015. V. 172. №9. P. 2330-2342. https://doi.org/10.1111/bph.13057
  • Chen Q., Yang Y., Huang Y., Pan C., Liu L., Qiu H. Angiotensin-(1-7) attenuates lung fibrosis by way of Mas receptor in acute lung injury // Journal of surgical research. 2013. V. 185. №2. P. 740-747. https://doi.org/10.1016/j.jss.2013.06.052
  • Li Y., Cao Y., Zeng Z., Liang M., Xue Y., Xi C., Jiang W. Angiotensin-converting enzyme 2/angiotensin-(1–7)/Mas axis prevents lipopolysaccharide–induced apoptosis of pulmonary microvascular endothelial cells by inhibiting JNK/NF–κB pathways // Scientific reports. 2015. V. 5. №1. P. 8209. https://doi.org/10.1038/srep08209
  • Meng Y., Yu C. H., Li W., Li T., Luo W., Huang S., Li X. Angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas axis protects against lung fibrosis by inhibiting the MAPK/NF-κB pathway // American journal of respiratory cell and molecular biology. 2014. V. 50. №4. P. 723-736. https://doi.org/10.1165/rcmb.2012-0451OC
  • Vickers C., Hales P., Kaushik V., Dick L., Gavin J., Tang J., Tummino P. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase // Journal of Biological Chemistry. 2002. V. 277. №17. P. 14838-14843. https://doi.org/10.1074/jbc.M200581200
  • Sodhi C. P., Wohlford-Lenane C., Yamaguchi Y., Prindle T., Fulton W. B., Wang S., Jia H. Attenuation of pulmonary ACE2 activity impairs inactivation of des-Arg9 bradykinin/BKB1R axis and facilitates LPS-induced neutrophil infiltration // American Journal of Physiology-Lung Cellular and Molecular Physiology. 2018. V. 314. №1. P. L17-L31. https://doi.org/10.1152/ajplung.00498.2016
  • Fraga-Silva R. A., Costa-Fraga F. P., Sousa F. B. D., Alenina N., Bader M., Sinisterra R. D., Santos R. A. An orally active formulation of angiotensin-(1-7) produces an antithrombotic effect // Clinics. 2011. V. 66. P. 837-841. https://doi.org/10.1590/S1807-59322011000500021
  • Marques F. D., Ferreira A. J., Sinisterra R. D., Jacoby B. A., Sousa F. B., Caliari M. V., Santos R. A. An oral formulation of angiotensin-(1-7) produces cardioprotective effects in infarcted and isoproterenol-treated rats // Hypertension. 2011. V. 57. №3. P. 477-483. https://doi.org/10.1161/HYPERTENSIONAHA.110.167346
  • Fraga-Silva R. A., Pinheiro S. V. B., Gonçalves A. C. C., Alenina N., Bader M., Souza Santos R. A. The antithrombotic effect of angiotensin-(1-7) involves mas-mediated NO release from platelets // Molecular Medicine. 2008. V. 14. P. 28-35. https://doi.org/10.2119/2007-00073.Fraga-Silva
  • Zhang H., Penninger J. M., Li Y., Zhong N., Slutsky A. S. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target // Intensive care medicine. 2020. V. 46. P. 586-590. https://doi.org/10.1007/s00134-020-05985-9
  • Kuba K., Imai Y., Rao S., Gao H., Guo F., Guan B., Penninger J. M. crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury // Nature medicine. 2005. V. 11. №8. P. 875-879. https://doi.org/10.1038/nm1267
  • Imai Y., Kuba K., Rao S., Huan Y., Guo F., Guan B., Penninger J. M. Angiotensinconverting enzyme 2 protects from severe acute lung failure // Nature. 2005. V. 436. №7047. P. 112-116. https://doi.org/10.1038/nature03712
  • Xie X., Chen J., Wang X., Zhang F., Liu Y. Erratum to “Age-and gender-related difference of ACE2 expression in rat lung” // Life Sciences. 2006. V. 26. №79. P. 2499. http://dx.doi.org/10.1016%2Fj.lfs.2006.09.028
  • Verdecchia P., Cavallini C., Spanevello A., Angeli F. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection // European journal of internal medicine. 2020. V. 76. P. 14-20.
  • Zhong J, Basu R, Guo D, Chow FL, Byrns S, Schuster M, Loibner H, Wang XH, Penninger JM, Kassiri Z, Oudit GY. Angiotensin-converting enzyme 2 suppresses pathological hypertrophy, myocardial fibrosis, and cardiac dysfunction. Circulation. 2010;122:717–728. 718 p following 728. https://doi.org/10.1016/j.ejim.2020.04.037
  • Trask A. J., Averill D. B., Ganten D., Chappell M. C., Ferrario C. M. Primary role of angiotensin-converting enzyme-2 in cardiac production of angiotensin-(1–7) in transgenic Ren-2 hypertensive rats // American Journal of Physiology-Heart and Circulatory Physiology. 2007. V. 292. №6. P. H3019-H3024. https://doi.org/10.1152/ajpheart.01198.2006
  • Mehta P., McAuley D. F., Brown M., Sanchez E., Tattersall R. S., Manson J. J. COVID- 19: consider cytokine storm syndromes and immunosuppression // The lancet. 2020. V. 395. №10229. P. 1033-1034. https://doi.org/10.1016/S0140-6736(20)30628-0
  • Akhmerov A., Marbán E. COVID-19 and the heart // Circulation research. 2020. V. 126. №10. P. 1443-1455. https://doi.org/10.1161/CIRCRESAHA.120.317055
  • Кривошеев В. В., Столяров А. И. Атмосферное давление и COVID-19 // Санитарный врач. 2021. №7. С. 8-17. EDN: KGDRBD. https://doi.org/10.33920/med-08-2107-01
  • Pirouz B., Shaffiee Haghshenas S., Shaffiee Haghshenas S., Piro P. Investigating a serious challenge in the sustainable development process: analysis of confirmed cases of COVID-19 (new type of coronavirus) through a binary classification using artificial intelligence and regression analysis // Sustainability. 2020. V. 12. №6. P. 2427. https://doi.org/10.3390/su12062427
  • Adhikari A., Yin J. Short-term effects of ambient ozone, PM2. 5, and meteorological factors on COVID-19 confirmed cases and deaths in Queens, New York // International journal of environmental research and public health. 2020. V. 17. №11. P. 4047. https://doi.org/10.3390/ijerph17114047
  • Li K. The link between humidity and COVID-19 caused death // Journal of Biosciences and Medicines. 2020. V. 8. №6. P. 50-55. https://doi.org/10.4236/jbm.2020.86005
  • Bashir M. F., Ma B., Komal B., Bashir M. A., Tan D., Bashir M. Correlation between climate indicators and COVID-19 pandemic in New York, USA // Science of the Total Environment. 2020. V. 728. P. 138835. https://doi.org/10.1016/j.scitotenv.2020.138835
  • Gupta A., Banerjee S., Das S. Significance of geographical factors to the COVID-19 outbreak in India // Modeling earth systems and environment. 2020. V. 6. P. 2645-2653. https://doi.org/10.1007/s40808-020-00838-2
  • Pani S. K., Lin N. H., RavindraBabu S. Association of COVID-19 pandemic with meteorological parameters over Singapore // Science of the Total Environment. 2020. V. 740. P. 140112. https://doi.org/10.1016/j.scitotenv.2020.140112
  • Cai Q. C., Lu J., Xu Q. F., Guo Q., Xu D. Z., Sun Q. W., Jiang Q. W. Influence of meteorological factors and air pollution on the outbreak of severe acute respiratory syndrome // Public health. 2007. V. 121. №4. P. 258-265. https://doi.org/10.1016/j.puhe.2006.09.023
  • Kumar G., Kumar R. R. A correlation study between meteorological parameters and COVID-19 pandemic in Mumbai, India // Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2020. V. 14. №6. P. 1735-1742. https://doi.org/10.1016/j.dsx.2020.09.002
  • Deyal N., Tiwari V., Bisht N. Impact of climatic parameters on COVID-19 pandemic progression in India: analysis and prediction. 2020. https://doi.org/10.1101/2020.07.25.20161919
  • Leung N. Y., Bulterys M. A., Bulterys P. L. Predictors of COVID-19 incidence, mortality, and epidemic growth rate at the country level // MedRxiv. 2020. P. 2020.05. 15.20101097. https://doi.org/10.1101/2020.05.15.20101097
  • Jaakkola K., Saukkoriipi A., Jokelainen J., Juvonen R., Kauppila J., Vainio O. Decline in temperature and humidity increases the occurrence of influenza in cold climate // Environmental Health. 2014. V. 13. P. 1-8. https://doi.org/10.1186/1476-069X-13-22
  • Liu J., Zhou J., Yao J., Zhang X., Li L., Xu X., Zhang K. (Impact of meteorological factors on the COVID-19 transmission: A multi-city study in China // Science of the total environment. 2020. V. 726. P. 138513. https://doi.org/10.1016/j.scitotenv.2020.138513
  • Luo W., Majumder M. S., Liu D., Poirier C., Mandl K. D., Lipsitch M., Santillana M. The role of absolute humidity on transmission rates of the COVID-19 outbreak // MedRxiv. 2020. P. 2020.02. 12.20022467. https://doi.org/10.1101/2020.02.12.20022467
  • Briz-Redón Á., Serrano-Aroca Á. A spatio-temporal analysis for exploring the effect of temperature on COVID-19 early evolution in Spain // Science of the total environment. 2020. V. 728. P. 138811. https://doi.org/10.1016/j.scitotenv.2020.138811
Еще
Статья обзорная