Современные возможности диагностики и лечения разрывов менисков коленного сустава

Автор: Кудрачев Т.Р., Азаркин К.М., Гончарук Ю.Р., Лычагин А.В., Тимашев П.С., Липина М.М., Петров П.И., Кавалерский Г.М.

Журнал: Кафедра травматологии и ортопедии @jkto

Рубрика: Обзор литературы

Статья в выпуске: 4 (50), 2022 года.

Бесплатный доступ

Мениски коленного сустава являются важными анатомическими структурами, повреждение и потеря которых стремительно ведет к развитию остеоартроза. На сегодняшний момент при лечении разрыва мениска приоритетной задачей является восстановление менисковой ткани. Для реконструкции необходимо воссоздать архитектуру и расположение клеток внутри мениска. Решением данной проблемы давно занимается регенеративная медицина.Цель данной работы. Обзор современной отечественной и зарубежной литературы, посвященной теме восстановления ткани мениска при помощи методов тканевой инженерии с использованием скаффолдов. В обзоре отражена актуальность проблемы лечения повреждений менисков коленного сустава, подробно обсуждаются возможности использования современных достижений регенеративной медицины, а также 3Д печати скаффалдов мениска.Материалы и методы.В ходе работы был проведен обзор отечественных и зарубежных публикаций за последние 5 лет. Поиск отечественных публикаций проводился в базе данных elibrary.ru, зарубежных - в базах данных PubMed, Scopus, MEDLINE, Cochrane library. В поиск включили оригинальные доклинические исследования invivo, связанные с тканевой инженерией менисков коленного сустава.Выводы. Использование комбинированных скаффолдов с целью замещения ткани мениска является перспективным направлением регенеративной медицины. Доступные коммерческие варианты скаффолдов показывают хорошие краткосрочные результаты лечения, возможности образования неоменисковой ткани на месте лизированных скаффолдов. Для достижения полной регенерации и восстановлению всех функции мениска исследователи продолжают активно разрабатывать и исследовать в эксперименте различные материалы и методы модификации каркасов.

Еще

Регенерация менисков, лечение менисков, тканевая инженерия, скаффолды менисков

Короткий адрес: https://sciup.org/142237450

IDR: 142237450   |   DOI: 10.17238/2226-2016-2022-4-57-66

Список литературы Современные возможности диагностики и лечения разрывов менисков коленного сустава

  • Абдуразаков У. А., Набиев Е. Н., Байзаков А. Р. Анатомо-функциональные особенности менисков и причины их повреждений // Вестник Казахского национального медицинского университета. 2020; 1:298-302. [Abdurazakov U.A., Nabiyev E.N., Baizakov A.R. Anatomical- functional features of meniscus and the causes of their damages. Vestnik Kazahskogo nacional’’nogo medicinskogo universiteta. 2020; 1:298-302. (In Russian)]
  • Verdonk R., Espregueira Mendes J., Monllau J. (eds) Meniscal Transplantation. Heidelberg, Springer Berlin publ. 2013;119
  • Allen P. R., Denham R. A., Swan A. V. Late degenerative changes after meniscectomy. Factors affecting the knee after operation. The Journal of bone and joint surgery. British volume, 1984; 66(5):666–671. doi: 10.1302/0301-620X.66B5.6548755.
  • Śmigielski R., Becker R., Zdanowicz U., Ciszek B. Medial meniscus anatomy-from basic science to treatment. Knee surgery, sports traumatology, arthroscopy: official journal of the ESSKA. 2015; 23(1):8–14. doi: 10.1007/s00167-014-3476-5.
  • Arnoczky S. P., Warren R. F. Microvasculature of the human meniscus. The American journal of sports medicine. 1982; 10(26):90–95. doi: 10.1177/036354658201000205.
  • Fox A. J., Bedi A., Rodeo S. A. The basic science of human knee menisci: structure, composition, and function. Sports health. 2012; 4(4):340–351. doi: 10.1177/1941738111429419.
  • Twomey-Kozak J., Jayasuriya C. T. Meniscus Repair and Regeneration: A Systematic Review from a Basic and Translational Science Perspective. Clinics in sports medicine. 2020; 39(1):125–163. doi: 10.1016/j.csm.2019.08.003.
  • Petersen W., Tillmann B. Collagenous fibril texture of the human knee joint menisci, Anatomy and Embryology (Berlin). 1998; 197(4):317–324. doi: 10.1007/s004290050141.
  • Renström P., Johnson R. J. Anatomy and biomechanics of the menisci. Clinics in sports medicine. 1990; 9(3):523–538. doi: 10.1016/S0278-5919(20)30704-3.
  • Guo W., Liu S., Zhu Y., Yu C., Lu S., Yuan M., Gao Y., Huang J., Yuan Z., Peng J., Wang A., Wang Y., Chen J., Zhang L., Sui X., Xu W., Guo Q. Advances and Prospects in Tissue-Engineered Meniscal Scaffolds for Meniscus Regeneration. Stem cells international. 2015; 517520. doi: 10.1155/2015/517520.
  • Anderson A. F., Irrgang J. J., Dunn W., Beaufils P., Cohen M., Cole B. J., Coolican M., Ferretti M., et all. Interobserver reliability of the International Society of Arthroscopy, Knee Surgery and Orthopaedic Sports Medicine (ISAKOS) classification of meniscal tears. The American journal of sports medicine. 2011; 39(5):926–932. doi: 10.1177/0363546511400533.
  • Malanga G. A., Andrus S., Nadler S. F., McLean, J. Physical examination of the knee: a review of the original test description and scientific validity of common orthopedic tests. Archives of physical medicine and rehabilitation. 2003; 84(4):592–603. doi: 10.1053/apmr.2003.50026.
  • Anderson M. W., Raghavan N., Seidenwurm D. J., Greenspan A., Drake C. Evaluation of meniscal tears: fast spin-echo versus conventional spin-echo magnetic resonance imaging. Academic radiology. 1995; 2(3):209–214. doi: 10.1016/s1076-6332(05)80166-7.
  • Magee T., Shapiro M., Williams D. Usefulness of simultaneous acquisition of spatial harmonics technique for MRI of the knee. American journal of roentgenology. 2004; 182(6):1411–1415. doi: 10.2214/ajr.182.6.1821411.
  • Reeder J. D., Matz S. O., Becker L., Andelman S. M. MR imaging of the knee in the sagittal projection: comparison of three-dimensional gradient- echo and spin-echo sequences. American journal of roentgenology. 1989; 153(3):537–540. doi: 10.2214/ajr.153.3.537.
  • Magee, T., & Williams, D. (2006). 3.0-T MRI of meniscal tears. American journal of roentgenology. 2006; 187(2):371–375. doi: 10.2214/AJR.05.0487.
  • Cotten A., Delfaut E., Demondion X., Lapègue F., Boukhelifa M., Boutry N., Chastanet P., Gougeon F. MR imaging of the knee at 0.2 and 1.5 T: correlation with surgery. AJR. American journal of roentgenology. 2000; 174(4):1093–1097. doi: 10.2214/ajr.174.4.1741093.
  • De Smet A. A., Graf B. K. Meniscal tears missed on MR imaging: relationship to meniscal tear patterns and anterior cruciate ligament tears. American journal of roentgenology. 1994; 162(4):905–911. doi: 10.2214/ajr.162.4.8141016.
  • Coşkun Bilge A., Tokgöz N., Dur H., Uçar M. The value of magnetic resonance imaging in diagnosing meniscal tears: A retrospective cohort study. Journal of Surgery and Medicine. 2019; 3(1):64-69 doi: 10.28982/josam.515244.
  • Hofmann G. O., Marticke J., Grossstück R., Hoffmann M., Lange M., Plettenberg H. K., Braunschweig R., Schilling O., Kaden I., Spahn G. Detection and evaluation of initial cartilage pathology in man: A comparison between MRT, arthroscopy and near-infrared spectroscopy (NIR) in their relation to initial knee pain. Pathophysiology: the official journal of the International Society for Pathophysiology. 2010;17(1):1–8. doi: 10.1016/j.pathophys.2009.04.001.
  • Ala-Myllymäki J., Danso E. K., Honkanen J. T. J., Korhonen R. K., Töyräs J., Afara I. O. Optical spectroscopic characterization of human meniscus biomechanical properties. Journal of biomedical optics. 2017; 22(12):1–10. doi: 10.1117/1.JBO.22.12.125008.
  • Giuffrida A., Di Bari A., Falzone E., Iacono F., Kon E., Marcacci M., Gatti R., Di Matteo B. Conservative vs. surgical approach for degenerative meniscal injuries: a systematic review of clinical evidence. European review for medical and pharmacological sciences. 2020; 24(6):2874–2885. doi: 10.26355/eurrev_202003_20651.
  • Kopf S., Beaufils P., Hirschmann M. T., Rotigliano N., Ollivier M., Pereira H., Verdonk R., Darabos N., Ntagiopoulos P., Dejour D., Seil R., Becker R. Management of traumatic meniscus tears: the 2019 ESSKA meniscus consensus. Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA. 2020; 28(4):1177–1194. doi: 10.1007/s00167-020-05847-3.
  • Pujol N., Barbier O., Boisrenoult P., Beaufils P. Amount of meniscal resection after failed meniscal repair. The American journal of sports medicine. 2011; 39 (8):1648-1652. doi:10.1177/0363546511402661
  • Okuda K., Ochi M., Shu N., Uchio, Y. Meniscal rasping for repair of meniscal tear in the avascular zone. Arthroscopy. 1999; 15(3):281-286. doi: 10.1016/s0749-8063(99)70035-6.
  • Keller R.E., O’Donnell E.A., Medina G.I.S., Linderman S.E., Cheng T.T.W., Sabbag O.D., Oh L.S. Biological augmentation of meniscal repair: a systematic review. Knee surgery, sports traumatology, arthroscopy. 2022;30(6):1915-1926. doi: 10.1007/s00167-021-06849-5. Epub 2022
  • Ryu R.K., Dunbar V.W.H., Morse G.G. Meniscal allograft replacement: a 1-year to 6-year experience. Arthroscopy. 2002; 18(9):989-994. doi: 10.1053/jars.2002.36104.
  • Pereira H., Fatih Cengiz I., Gomes S., Espregueira-Mendes J., Ripoll P.L., Monllau J.C., Reis R.L., Oliveira J.M. Meniscal allograft transplants and new scaffolding techniques. EFORT Open Reviews. 2019; 3(6):279-295. doi: 10.1302/2058-5241.4
  • Southworth T. M., Naveen N. B., Tauro T. M., Chahla J., Cole B. J. Meniscal Allograft Transplants. Clinics in sports medicine. 2020; 39(1):93–123. doi:10.1016/j.csm.2019.08.013
  • Gelber P. E., Verdonk. P., Getgood A. M., Monllau J. C. Meniscal transplantation: state of the art. Journal of ISAKOS: Joint Disorders and Orthapaedic Sports Medicine. 2017; 2(6):339–349. doi: 10.1136/jisakos-2017-000138.
  • Milenin O., Strafun S., Sergienko R., Baranov K. Lateral Meniscus Replacement Using Peroneus Longus Tendon Autograft. Arthroscopy techniques. 2020; 9(9):1163–1169. doi:10.1016/j.eats.2020.04.016
  • Myers K. R., Sgaglione N. A., Goodwillie A. D. Meniscal scaffolds. The journal of knee surgery. 2014; 27(6):435–442. doi: 10.1055/s-0034-1388656.
  • Reale D., Previtali D., Andriolo L., Grassi A., Candrian C., Zaffagnini S., Filardo G. No differences in clinical outcome between CMI and Actifit meniscal scaffolds: a systematic review and meta-analysis. Knee surgery, sports traumatology, arthroscopy: official journal of the ESSKA. 2022; 30(1):328-348. doi:10.1007/s00167-021-06548-1
  • Bulgheroni E., Grassi A., Campagnolo M., Bulgheroni P., Mudhigere A., Gobbi A. Comparative Study of Collagen versus Synthetic-Based Meniscal Scaffolds in Treating Meniscal Deficiency in Young Active Population. Cartilage. 2016; 7(1):29-38. doi: 10.1177/1947603515600219.
  • Kon E., Filardo G., Zaffagnini S., Di Martino A., Di Matteo B., Marcheggiani Muccioli G.M., Busacca M., Marcacci M. Biodegradable polyurethane meniscal scaffold for isolated partial lesions or as combined procedure for knees with multiple comorbidities: clinical results at 2 years. Knee surgery, sports traumatology, arthroscopy: official journal of the ESSKA. 2014;22(1):128–134. doi: 10.1007/s00167-012-2328-4.
  • Sun J., Vijayavenkataraman S., Liu H. An Overview of Scaffold Design and Fabrication Technology for Engineered Knee Meniscus. Materials. 2017; 10(1):29. doi: 10.3390/ma10010029.
  • Gao S., Chen M., Wang P., Li Y., Yuan Z., Guo W., Zhang Z., Zhang X., Jing X., Li X., Liu S., Sui X., Xi T., Guo Q. An electrospun fiber reinforced scaffold promotes total meniscus regeneration in rabbit meniscectomy model. Acta biomaterialia. 2018;73:127-140. doi: 10.1016/j.actbio.2018.04.012.
  • Grogan S. P., Baek J., D’Lima D. D. Meniscal tissue repair with nanofibers: future perspectives. Nanomedicine (London, England). 2020;15(25):2517–2538. doi: 10.2217/nnm-2020-0183.
  • Chen M., Gao S., Wang P., Li Y., Guo W., Zhang Y., Wang M., Xiao T., Zhang Z., Zhang X., Jing X., Li X., Liu S., Guo Q., Xi T. The application of electrospinning used in meniscus tissue engineering. Journal of biomaterials science. Polymer edition. 2018; 29(5):461–475. doi:10.1080/09205063.2018.1425180.
  • Moroni L., Burdick J.A., Highley C., Lee S.J., Morimoto Y., Takeuchi S., Yoo J.J. Biofabrication strategies for 3D in vitro models and regenerative medicine. Nature reviews. Materials. 2018; 3(5):21–37. doi: 10.1038/s41578-018-0006-y.
  • Chen M., Feng Z., Guo W., Yang D., Gao S., Li Y., Shen S., Yuan Z., Huang B., Zhang Y., Wang M., Li X., Hao L., Peng J., Liu S., Zhou Y., Guo, Q. PCL-MECM-Based Hydrogel Hybrid Scaffolds and Meniscal Fibrochondrocytes Promote Whole Meniscus Regeneration in a Rabbit Meniscectomy Model. ACS applied materials and interfaces. 2018; 11(44):41626–41639. doi: 10.1021/acsami.9b13611.
  • Zhang Z. Z., Wang S. J., Zhang J. Y., Jiang W. B., Huang A. B., Qi Y. S., Ding J. X., Chen X. S., Jiang D., Yu J. K. 3D-Printed Poly(ε-caprolactone) Scaffold Augmented With Mesenchymal Stem Cells for Total Meniscal Substitution: A 12- and 24-Week Animal Study in a Rabbit Model. The American journal of sports medicine. 2017; 45(7):1497–1511. doi: 10.1177/0363546517691513.
  • Zhang Z. Z., Jiang D., Ding J. X., Wang S. J., Zhang L., Zhang J. Y., Qi Y. S., Chen X. S., Yu J. K. Role of scaffold mean pore size in meniscus regeneration. Acta biomaterialia. 2016;43:314–326. doi: 10.1016/j.actbio.2016.07.050.
  • Jian Z., Zhuang T., Qinyu T., Liqing P., Kun L., Xujiang L., Diaodiao W., Zhen Y., Shuangpeng J., Xiang S., Jingxiang H., Shuyun L., Libo H., Peifu T., Qi Y., Quanyi G. 3D bioprinting of a biomimetic meniscal scaffold for application in tissue engineering. Bioactive materials. 2020;6(6):1711–1726. doi: 10.1016/j.bioactmat.2020.11.027.
  • Bahcecioglu G., Hasirci N., Bilgen B., Hasirci V. A 3D printed PCL/hydrogel construct with zone-specific biochemical composition mimicking that of the meniscus. Biofabrication. 2019;11(2):025002. doi: 10.1088/1758-5090/aaf707.
  • Wu Y. Electrohydrodynamic jet 3D printing in biomedical applications. Acta biomaterialia. 2021; 128: 21-41. doi: 10.1016/j.actbio.2021.04.036.
  • Korpershoek J. V., Ruijter M., Terhaard B. F., Hagmeijer M. H., Saris D. B. F., Castilho M., Malda J., Vonk L. A. Potential of Melt Electrowritten Scaffolds Seeded with Meniscus Cells and Mesenchymal Stromal Cells. International journal of molecular sciences. 2021; 22(20):11200. doi: 10.3390/ijms222011200.
  • Baek J., Sovani S., Choi W., Jin S., Grogan S. P., D’Lima D. D. Meniscal Tissue Engineering Using Aligned Collagen Fibrous Scaffolds: Comparison of Different Human Cell Sources. Tissue engineering, Part A. 2018; 24(1-2):81–93. doi: 10.1089/ten.tea.2016.0205.
  • Ghodbane S. A., Patel J. M., Brzezinski A., Lu T. M., Gatt C. J., Dunn M. G. Biomechanical characterization of a novel collagen-hyaluronan infused 3D-printed polymeric device for partial meniscus replacement. Journal of biomedical materials research. Part B, Applied biomaterials. 2019;107(8):2457–2465. doi: 10.1002/jbm.b.34336.
  • Rajalekshmi R., Jayasree P., Annie J., Roy J. Injectable self-crosslinking hydrogels for meniscal repair: A study with oxidized alginate and gelatin. Carbohydrate Polymers. 2020; 234:115902. doi: 10.1016/j.carbpol.2020.115902.
  • Stone K. R., Steadman J. R., Rodkey W. G., Li S. T. Regeneration of meniscal cartilage with use of a collagen scaffold. Analysis of preliminary data. The Journal of bone and joint surgery, American volume. 1997; 79(12):1770–1777. doi:10.2106/00004623-199712000-00002
  • Li H., Li P., Yang Z., Gao C., Fu L., Liao Z., Zhao T., Cao F., Chen W., Peng Y., Yuan Z., Sui X., Liu S., Guo Q. Meniscal Regenerative Scaffolds Based on Biopolymers and Polymers: Recent Status and Applications. Frontiers in cell and developmental biology. 2021; 9: 661802. doi: 10.3389/fcell.2021.661802.
  • Cojocaru D. G., Hondke S., Krüger J. P., Bosch C., Croicu C., Florescu S., Lazarescu A., Patrascu J. M., Jr, Patrascu J. M., Dauner M., Gresser G. T., Endres M. Meniscus-shaped cell-free polyglycolic acid scaffold for meniscal repair in a sheep model. Journal of biomedical materials research. Part B, Applied biomaterials. 2020; 108(3):809–818. doi: 10.1002/jbm.b.34435.
  • An Y. H., Woolf S. K., Friedman R. J. Pre-clinical in vivo evaluation of orthopaedic bioabsorbable devices. Biomaterials. 2000; 21(24):2635–2652. doi: 10.1016/S0142-9612(00)00132-0.
  • Bahcecioglu G., Hasirci N., Bilgen B., Hasirci V. Hydrogels of agarose, and methacrylated gelatin and hyaluronic acid are more supportive for in vitro meniscus regeneration than three dimensional printed polycaprolactone scaffolds. International journal of biological macromolecules. 2018; 122:1152–1162. doi: 10.1016/j.ijbiomac.2018.09.065.
  • Rey-Rico A., Cucchiarini M., Madry H. Hydrogels for precision meniscus tissue engineering: a comprehensive review. Connective tissue research. 2017; 58(3-4):317–328. doi: 10.1080/03008207.2016.1276576.
  • Ahmed E. M. Hydrogel: Preparation, characterization, and applications: A review. Journal of advanced research. 2015; 6(2):105–121. doi: 10.1016/j.jare.2013.07.006.
  • Williams L. B., Adesida A. B. Angiogenic approaches to meniscal healing. Injury. 2018; 49(3):467–472. doi: 10.1016/j.injury.2018.01.028.
  • Abbadessa A., Crecente-Campo J., Alonso M. J. Engineering Anisotropic Meniscus: Zonal Functionality and Spatiotemporal Drug Delivery. Tissue engineering. Part B, Reviews. 2021; 27(2):133–154. doi: 10.1089/ten.teb.2020.0096.
  • Veronesi F., Di Matteo B., Vitale N. D., Filardo G., Visani A., Kon E., Fini M. Biosynthetic scaffolds for partial meniscal loss: A systematic review from animal models to clinical practice. Bioactive materials. 2021; 6(11):3782–3800. doi: 10.1016/j.bioactmat.2021.03.033.
  • Shimomura K., Rothrauff B. B., Tuan R. S. Region-Specific Effect of the Decellularized Meniscus Extracellular Matrix on Mesenchymal Stem Cell-Based Meniscus Tissue Engineering. The American journal of sports medicine. 2017; 45(3):604–611. doi: 10.1177/0363546516674184.
  • Kwon H., Brown W. E., Lee C. A., Wang D., Paschos N., Hu J. C., Athanasiou K. A. Surgical and tissue engineering strategies for articular cartilage and meniscus repair. Nature reviews. Rheumatology. 2019; 15(9):550–570. doi: 10.1038/s41584-019-0255-1.
  • Peng Y., Lu M., Zhou Z., Wang C., Liu E., Zhang Y., Liu T., Zuo J. Natural biopolymer scaffold for meniscus tissue engineering. Frontiers in bioengineering and biotechnology.2022;10:1003484. doi: 10.3389/fbioe.2022.1003484.
  • Bansal S., Keah N. M., Neuwirth A. L., O’Reilly O., Qu F., Seiber B. N., Mandalapu S., Mauck R. L., Zgonis M. H., Large Animal Models of Meniscus Repair and Regeneration: A Systematic Review of the State of the Field. Tissue engineering. 2017; 23(11):661–672. doi: 10.1089/ten.tec.2017.0080.
Еще
Статья обзорная