Создание и фокусировка векторного пучка второго порядка с помощью субволнового оптического элемента
Автор: Дегтярев Сергей Александрович, Савельев Дмитрий Андреевич
Журнал: Компьютерная оптика @computer-optics
Рубрика: Дифракционная оптика, оптические технологии
Статья в выпуске: 1 т.46, 2022 года.
Бесплатный доступ
В данной статье предложен вид субволновых аксиконов для создания и фокусировки векторных цилиндрических пучков второго порядка. При этом показано, что с помощью предложенных субволновых аксиконов можно создавать фокусные пятна с обратным потоком энергии. С помощью программы Comsol Multiphysics проведено моделирование работы субволновых аксиконов с различным углом закрутки. Показано различие получаемых распределений плотности потока мощности при различных углах закрутки спирали аксикона.
Субволновые аксиконы, векторные цилиндрические пучки, метод конечных элементов, обратный поток, comsol multiphysics
Короткий адрес: https://sciup.org/140290701
IDR: 140290701 | DOI: 10.18287/2412-6179-CO-1053
Список литературы Создание и фокусировка векторного пучка второго порядка с помощью субволнового оптического элемента
- Xiao S, Wang T, Liu T, Zhou C, Jiang X, Zhang J. Active metamaterials and metadevices: a review. J Phys D-Appl Phys 2020; 53(50): 503002. DOI: 10.1088/1361-6463/abaced.
- Krzysztofik WJ, Cao TN. Metamaterials in application to improve antenna parameters. Metamaterials and Metasur-faces 2018; 12(2): 63-85. DOI: 10.5772/intechopen.80636.
- Gnawali R, Banerjee PP, Haus JW, Reshetnyak V, Evans DR. Optical propagation through anisotropic metamaterials: Application to metallo-dielectric stacks. Opt Commun 2018; 425: 71-79. DOI: 10.1016/j.optcom.2018.04.069.
- Chon JWM, Iniewski K. Nanoplasmonics: advanced device applications. CRC Press; 2018. ISBN: 978-1-46651426-3.
- Soukoulis CM, Wegener M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat Photon 2011; 5(9): 523. DOI: 10.1038/nphoton.2011.154.
- Petronijevic E, Sibilia C. Thin films of phase change materials for light control of metamaterials in the optical and infrared spectral domain. Opt Quantum Electron 2020; 52(2): 1-10. DOI: 10.1007/s11082-020-2237-6.
- Cui TJ. Microwave metamaterials—from passive to digital and programmable controls of electromagnetic waves. J Opt 2017; 19(8): 084004. DOI: 10.1088/2040-8986/aa7009.
- Shalaev VM, Cai W, Chettiar UK, Yuan HK, Sarychev AK, Drachev VP, Kildishev AV. Negative index of refraction in optical metamaterials. Optics Letters 2005; 30(24): 3356-3358. DOI: 10.1364/OL.30.003356
- Gómez-Castaño M, Garcia-Pomar JL, Pérez LA, Shanmu-gathasan S, Ravaine S, Mihi A. Electrodeposited negative index metamaterials with visible and near infrared response. Adv Opt Mater 2020; 8(19): 2000865. DOI: 10.1002/adom.202000865.
- Lapine M, Shadrivov IV, Kivshar YS. Colloquium: nonlinear metamaterials. Rev Mod Phys 2014; 86(3): 1093. DOI: 10.1103/RevModPhys.86.1093.
- Boltasseva A, Atwater HA. Low-loss plasmonic metamaterials. Science 2011; 331(6015): 290-291. DOI: 10.1126/science.1198258.
- Bukhari SS, Vardaxoglou JY, Whittow W. A metasurfaces review: Definitions and applications. Appl Sci 2019; 9(13): 2727. DOI: 10.3390/app9132727.
- Kildishev AV, Boltasseva A, Shalaev VM. Planar photonics with metasurfaces. Science 2013; 339(6125): 1232009. DOI: 10.1126/science.1232009.
- Zhang X, Li Q, Liu F, Qiu M, Sun S, He Q, Zhou L. Controlling angular dispersions in optical metasurfaces. Light Sci Appl 2020; 9(1): 1-12. DOI: 10.1038/s41377-020-0313-0.
- Han Y, Chen S, Ji C, Liu X, Wang Y, Liu J, Li J. Reprogrammable optical metasurfaces by electromechanical reconfiguration. Opt Express 2021; 29(19): 30751-30760. DOI: 10.1364/OE.434321.
- Dorrah AH, Rubin NA, Zaidi A, Tamagnone M, Capasso F. Metasurface optics for on-demand polarization transformations along the optical path. Nat Photon 2021; 15(4): 287-296. DOI: 10.1038/s41566-020-00750-2.
- McLeod JH. The axicon: a new type of optical element. J Opt Soc Am 1954; 44(8): 592-597. DOI: 10.1364/JOSA.44.000592.
- Alferov SV, Khonina SN, Karpeev SV. Study of polarization properties of fiber-optics probes with use of a binary phase plate. J Opt Soc Am A 2014; 31(4): 802-807. DOI: 10.1364/JOSAA.31.000802.
- Khonina S, Degtyarev S, Savelyev D, Ustinov A. Focused, evanescent, hollow, and collimated beams formed by mi-croaxicons with different conical angles. Opt Express 2017; 25(16): 19052-19064. DOI: 10.1364/OE.25.019052.
- Filipkowski A, Piechal B, Pysz D, Stepien R, Waddie A, Taghizadeh MR, Buczynski R. Nanostructured gradient index microaxicons made by a modified stack and draw method Opt Lett 2015; 40(22): 5200-5203. DOI: 10.1364/OL.40.005200.
- Savelyev DA, Ustinov AV, Khonina SN, Kazanskiy NL. Layered lens with a linear dependence of the refractive index change. Proc SPIE 2016; 9807: 98070P. DOI: 10.1117/12.2234404.
- Golub I, Chebbi B, Shaw D, Nowacki D. Characterization of a refractive logarithmic axicon. Opt Lett 2010; 35(16): 2828-2830. DOI: 10.1364/OL.35.002828.
- Gorelick S, Paganin DM, de Marco A. Axilenses: refractive micro-optical elements with arbitrary exponential profiles. APL Photonics 2020; 5(10): 106110. DOI: 10.1063/5.0022720.
- Khonina SN, Ustinov AV. Very compact focal spot in the near-field of the fractional axicon. Opt Commun 2017; 391: 24-29. DOI: 10.1016/j.optcom.2016.12.034.
- Khonina SN, Savel'ev DA, Pustovoi IA, Serafimovich PG. Diffraction at binary microaxicons in the near field. J Opt Technol 2012; 79(10): 626-631. DOI: 10.1364/JOT.79.000626.
- Savelyev DA, Khonina SN. Characteristics of sharp focusing of vortex Laguerre-Gaussian beams. Computer Optics 2015; 39(5): 654-662. DOI: 10.18287/0134-2452-2015-395-654-662.
- Westheimer G. Focused and defocused retinal images with Bessel and axicon pupil functions. J Opt Soc Am A 2020; 37(1): 108-114. DOI: 10.1364/JOSAA.37.000108.
- Savelyev DA. The investigation of the features of focusing vortex super-Gaussian beams with a variable-height dif-fractive axicon. Computer Optics 2021; 45(2): 214-221. DOI: 10.18287/2412-6179-CO-862.
- Khonina SN, Savelyev DA, Kazanskiy NL. Analysis of polarisation states at sharp focusing. Optik 2016; 127(6): 3372-3378. DOI: 10.1016/j.ijleo.2015.12.108.
- Rajesh KB, Suresh NV, Anbarasan PM, Gokulakrishnan K, Mahadevan G. Tight focusing of double ring shaped radially polarized beam with high NA lens axicon. Opt Laser Technol 2011; 43(7): 1037-1040. DOI: 10.1016/j.optlastec.2010.11.009.
- Savelyev D, Kazanskiy N. Near-field vortex beams diffraction on surface micro-defects and diffractive axicons for polarization state recognition. Sensors 2021; 21(6): 1973. DOI: 10.3390/s21061973.
- Khonina SN, Volotovsky SG. Application axicons in a large-aperture focusing system. Optical Memory and Neural Networks 2014; 23(4): 201-217. DOI: 10.3103/S1060992X14040043.
- Savelyev DA. The sub-wavelength complex micro-axicons for focal spot size reducing using high-performance computer systems. Proc SPIE 2021; 11769: 1176918. DOI: 10.1117/12.2589220.
- Savelyev DA, Khonina SN. Maximising the longitudinal electric component at diffraction on a binary axicon linearly polarized radiation. Computer Optics 2012; 36(4): 511517.
- Khonina SN, Karpeev SV, Alferov SV, Savelyev DA, Laukkanen J, Turunen J. Experimental demonstration of the generation of the longitudinal E-field component on the optical axis with high-numerical-aperture binary ax-icons illuminated by linearly and circularly polarized beams. J Opt 2013; 15(8): 085704. DOI: 10.1088/20408978/15/8/085704.
- Khonina SN, Degtyarev SA. Analysis of the formation of a longitudinally polarized optical needle by a lens and axicon under tightly focused conditions. J Opt Technol 2016; 83(4): 197-205. DOI: 10.1364/JOT.83.000197.
- Ravi V, Suresh P, Rajesh KB, Jaroszewicz Z, Anbarasan PM, Pillai TVS. Generation of sub-wavelength longitudinal magnetic probe using high numerical aperture lens ax-icon and binary phase plate. J Opt 2012; 14(5): 055704. DOI: 10.1088/2040-8978/14/5/055704.
- Zhan Q. Cylindrical vector beams: from mathematical concepts to applications. Adv Opt Photonics 2009; 1(1): 157. DOI: 10.1364/AOP.1.000001.
- Savelyev DA. The investigation of focusing of cylindrical-ly polarized beams with the variable height of optical elements using high-performance computer systems. Proc SPIE 2021; 11793: 117930X. DOI: 10.1117/12.2591993.
- Livakas N, Skoulas E, Stratakis E. Omnidirectional iridescence via cylindrically-polarized femtosecond laser processing. Opto-Electron Adv 2020; 3(5): 190035. DOI: 10.29026/oea.2020.190035.
- Degtyarev SA, Volotovsky SG, Khonina SN. Sublinearly chirped metalenses for forming abruptly autofocusing cy-lindrically polarized beams. J Opt Soc Am B 2018; 35(8): 1963-1969. DOI: 10.1364/JOSAB.35.001963.
- Savelyev DA, Khonina SN, Golub I. Tight focusing of higher orders Laguerre-Gaussian modes. AIP Conf Proc 2016; 1724: 020021. DOI: 10.1063/1.4945141.
- Qiao W, Lei T, Wu Z, Gao S, Li Z, Yuan X. Approach to multiplexing fiber communication with cylindrical vector beams. Opt Lett 2017; 42(13): 2579-2582. DOI: 10.1364/OL.42.002579.
- Millione G, Nguyen ThA, Leach J, Nolan DA, Alfano RR. Using the nonseparability of vector beams to encode information for optical communication. Opt Lett 2015; 40(21): 4887-4890. DOI: 10.1364/OL.40.004887.
- Zhou Z, Zhu L. Tight focusing of axially symmetric polarized beams with fractional orders. Opt Quant Electron 2015; 48: 1-9. DOI: 10.1007/s11082-015-0260-9.
- Khonina SN, Ustinov AV, Degtyarev SA., Inverse energy flux of focused radially polarized optical beams. Phys Rev A 2018; 98(4): 043823. DOI: 10.1103/PhysRevA.98.043823.
- Stafeev SS, Nalimov AG, Kotlyar VV. Energy backflow in a focal spot of the cylindrical vector beam. Computer Optics 2018; 42(5): 744-750. DOI: 10.18287/2412-61792018-42-5-744-750.
- Novitsky AV, Novitsky DV. Negative propagation of vector Bessel beams. J Opt Soc Am A 2007; 24(9): 28442849. DOI: 10.1364/JOSAA.24.002844.
- Guarnieri G, Uchiyama C, Vacchini B. Energy backflow and non-Markovian dynamics. Phys Rev A 2016; 93(1): 012118. DOI: 10.1103/PhysRevA.93.012118.
- Kotlyar VV, Nalimov AG. A vector optical vortex generated and focused using a metalens. Computer Optics 2017; 41(5): 645-654. DOI: 10.18287/2412-6179-2017-41-5-645-654.
- Kotlyar VV, Stafeev SS, Nalimov AG. Energy backflow in the focus of a light beam with phase or polarization singularity. Phys Rev A 2019; 99(3): 033840. DOI: 10.1103/PhysRevA.99.033840.
- Kos Z, Ravnik M. Field generated nematic microflows via backflow mechanism. Sci Rep 2020; 10(1): 1-10. DOI: 10.1038/s41598-020-57944-5.
- Khonina SN, Savelyev DA. Optimization of the optical microelements using high-performance computer systems. Radiophys Quant El+ 2015; 57(8-9): 650-658. DOI: 10.1007/s11141-015-9550-0.
- Degtyarev SA, Savelyev DA, Khonina SN. Subwavelength diffraction grating with continuous ridges for inverse energy flux generation. PIERS-Spring 2019: 2005-2010. DOI: 10.1109/PIERS-Spring46901.2019.9017337.
- Vajdi M, Moghanlou FS, Sharifianjazi F, Asl MS, Sho-kouhimehr M. A review on the Comsol Multiphysics studies of heat transfer in advanced ceramics. J Compos Compd 2020; 2(2): 35-43. DOI: 10.29252/jcc.2.1.5.
- Degtyarev SA, Savelyev DA, Karpeev SV. Diffractive optical elements for generating cylindrical beams of different orders. Computer Optics 2019; 43(3): 347-355. DOI: 10.18287/2412-6179-2019-43-3-347-355.
- Degtyarev S, Savelyev D, Khonina S, Kazanskiy N. Metasurfaces with continuous ridges for inverse energy flux generation. Opt Express 2019; 27(11): 15129-15135. DOI: 10.1364/OE.27.015129.
- Bomzon ZE, Biener G, Kleiner V, Hasman E. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings. Opt Lett 2002; 40(21): 1141-1143. DOI: 10.1364/OL.27.001141.
- Khonina SN, Tukmakov KN, Degtyarev SA, Reshetnikov AS, Pavelyev VS, Knyazev BA, Choporova YuYu. Design, fabrication and investigation of a subwavelength ax-icon for terahertz beam polarization transforming. Computer Optics 2019; 43(5): 756-764. DOI: 10.18287/24126179-2019-43-5-756-764.