Space-varying restoration of diffuse optical tomograms reconstructed by the filtered back projection algorithm

Бесплатный доступ

Possibility is investigated to enhance spatial resolution of diffuse optical tomograms reconstructed by the photon average trajectories (PAT) method. The PAT method is based on a concept of average statistical trajectory of light energy transfer from point source to point detector. The inverse problem of diffuse optical tomography reduces to solution of an integral equation with integration by conventional PAT. In the result for reconstruction of diffuse optical images the conventional algorithms of projection tomography can be applied, including filtered backprojection algorithm. The shortcoming of the PAT method is that it reconstructs I mages blurred in the result of averaging by photons spatial distribution contributing into the signal measured by a detector. To enhance resolution we apply a spatially variant blur model based on interpolation of spatially invariant point spread functions simulated for different image regions. To restore tomograms two iterative algorithms for solution of system of linear algebraic equations are used: conjugate gradient algorithm for least squares problems and modified residual norm steepest descent algorithm. It is shown that one can achieve 30% enhancement of spatial resolution.

Еще

Короткий адрес: https://sciup.org/147152124

IDR: 147152124

Список литературы Space-varying restoration of diffuse optical tomograms reconstructed by the filtered back projection algorithm

  • Arridge S.R. «Optical tomography in medical imaging», Inverse Probl. 15, R41-R93 (1999).
  • Yodh A. and Chance В., «Spectroscopy and imaging with diffusing light», Phys. Today 48, 34-40 (1995).
  • A.H. Hielscher, A.D. Klose and KM. Hanson, Gradient-based iterative image reconstruction scheme for timeresolved optical tomography, IEEE Trans. Med. Imaging 18, 262-271 (1999).
  • V.V. Lyubimov. «Optical tomography of highly scattering media using first transmitted photons of ultrashort pulses», Opt. Spectrosc. 80, 616-619 (1996).
  • V.V. Lyubimov, A.G. Kalintsev, A.B. Konovalov, O.V. Lyamtsev, O.V. Kravtsenyuk, A.G. Murzin, O.V. Golubkina, G.B. Mordvinov, L.N. Soms and L.M. Yavorskaya, «Application of photon average trajectories method to real-time reconstruction of tissue inhomogeneities in diffuse optical tomography of strongly scattering media», Phys. Med. Biol. 47, 2109-2128 (2002).
  • A.B. Konovalov, V. V. Lyubimov, I.I. Kutuzov, O.V. Kravtsenyuk, A.G. Murzin, G.B. Mordvinov, L.N. Soms and L.M. Yavorskaya, «Application of the transform algorithms to high-resolution image reconstruction in optical diffusion tomography of strongly scattering media», J. Electron. Imaging 12, 602-612 (2003).
  • V.V. Lyubimov, O.V. Kravtsenyuk, A.G. Kalintsev, A.G. Murzin, L.N. Soms, A.B. Konovalov, I.I. Kutuzov, O.V. Golubkina and L.M. Yavorskaya, «The possibility of increasing the spatial resolution in diffusion optical tomography», J. Opt. Technol. 70, 715-720 (2003).
  • A.B. Konovalov and V.V. Lyubimov, «High-resolution restoration of diffuse optical images reconstructed by the photon average trajectories method» in Optical Technologies in Biophysics and Medicine V, V. V. Tuchin, ed, Proc. SPIE 5474, 66-79 (2004).
  • K.P. Lee, J.G. Nagy and L. Perrone, «Iterative methods for image restoration: a Matlab object oriented approach», see http://www.mathcs.emory.edu/nagy/RestoreTools/.
  • A. Bjorck, Numerical Methods for Least Squares Problems (SUM, Philadelphia, PA, 1996).
  • L. Kaufman, «Maximum likelihood, least squares, and penalized least squares for PET», IEEE Trans. Med. Imag. 12, 200-214 (1993).
  • J. G. Nagy and Z. Strakos, «Enforcing non-negativity in image reconstruction algorithms», in Mathematical Modeling, Estimating, and Imaging, D. C. Wilson et. ah, eds., Proc. SPIE 4121, 182-190 (2000).
  • M. Hanke and J.G. Nagy, «Restoration of atmospherically blurred images by symmetric indefinite conjugate gradient techniques» Inverse Probl. 12, 157-173(1996).
Еще
Краткое сообщение