Spatial distribution of ndvi seeds of cereal crops with different levels of weediness according to planetscope satellite data

Автор: Pisman Tamara I., Erunova Marina G., Botvich Irina Yu., Shevyrnogov Anatoly P.

Журнал: Журнал Сибирского федерального университета. Серия: Техника и технологии @technologies-sfu

Статья в выпуске: 5 т.13, 2020 года.

Бесплатный доступ

The objective of the study is to assess the state of agricultural seeds (level of weediness) on the territory of the Krasnoyarsk Agricultural Research Institute of Federal Research Center «Krasnoyarsk Science Center of the SB RAS» near the village Minino according to satellite data. For this purpose, an algorithm for obtaining and processing PlaneScope satellite data for calculating the NDVI vegetation index of agricultural seeds has been developed. On its basis a map of the spatial distribution of NDVI wheat seeds with different levels of weediness has been created. According to PlanetScope satellite data, an opportunity to interpret areas of wheat seeds with high and low levels of weediness has been shown. It has been found that the NDVI value of pure plantation of wheat with a low level of weediness is greater than the NDVI value of wheat seeds with a high level of weediness.

Еще

Planetscope, ndvi, algorithm, cereal crops, weediness of crops

Короткий адрес: https://sciup.org/146281643

IDR: 146281643   |   DOI: 10.17516/1999-494X-0247

Список литературы Spatial distribution of ndvi seeds of cereal crops with different levels of weediness according to planetscope satellite data

  • Wu B., Meng J., Li Q, Yan N., Du X., Zhang M. Remote sensing-based global crop monitoring: experiences with China's CropWatch system, International Journal of Digital Earth, 2014, 7(2), 113-137
  • Sims D.A., Gamon J.A. Relationships Between Leaf Pigment Content and Spectral Reflectance Across a Wide Range of Species, Leaf Structures and Developmental Stages, Remote Sensing of Environment, 2002, 81(2-3), 337-354
  • Сергеева О.С., Красницкий В.М., Березин Л.В. Мониторинг почвенного покрова Западной Сибири по данным дистанционного зондирования, Плодородие, 2010, 1, 7-9
  • Becker-Reshef I., Justice C., Sullivan M., Vermote E., Tucker C., Anyamba A., Small J. Monitoring Global Croplands with Coarse Resolution Earth Observations: The Global Agriculture Monitoring (GLAM) Project, Remote Sensing, 2010, 2 (6),1589-1609
  • Erunova M.G., Shpedt A.A., Trubnikov Y.N., Yakubailik O.E. Geospatial database for digitalization of agriculture of the Krasnoyarsk territory. IOP Conference Series: Earth and Environmental Science, 2019, 315, 032022 DOI: 10.1088/1755-1315/315/3/032022
  • Pisman T.I., Shevyrnogov A.P., Larko A.A., Botvich I.Y., Emelyanov D.V., Shpedt A.A., Trubnikov Y.N. The Information Content of Spectral Vegetation Indices in the Interpretation of Satellite Images of Cultivated Fields, Biophysics, 2019, 64(4), 588-592
  • Бекетова О.А., Иванова Н.В., Жохова Е.А. Особенности видового состава сорной флоры Красноярского природного округа, Вестник КрасГАУ, 2019, 4, 10-15
  • Rembold F., Atzberger C., Savin I., Rojas O. Using low resolution satellite imagery for yield prediction and yield anomaly detection, Remote Sensing, 2013, 5(4), 1704-1733
  • Савин И.Ю., Докукин П.А., Вернюк Ю.И., Жоголев А.В. О влиянии засоренности на NDVI посевов ярового ячменя, определяемого по спутниковым данным MODIS, Современные проблемы дистанционного зондирования Земли из космоса, 2017, 14(3), 185-195
  • Бондур В.Г. Современные подходы к обработке больших потоков гиперспектральной и многоспектральной аэрокосмической информации, Исследование Земли из космоса, 2014, 1, 4-16
Еще
Статья научная