Спектрофотометрический газоанализатор-гигрометр "Зима"
Автор: Поплавский Ю.А., Сердюков В.И., Синица Л.Н., Щербаков А.П.
Журнал: Научное приборостроение @nauchnoe-priborostroenie
Рубрика: Экспериментальные разработки
Статья в выпуске: 3 т.19, 2009 года.
Бесплатный доступ
Описывается спектрофотометрический проточный гигрометр "Зима", предназначенный для измерения влажности газа при высоком давлении. Регистрация и обработка спектров проводится в области 1872 нм, где спектры поглощения паров воды и подавляющего числа газов, в том числе и углеводородов, поддаются селективному разделению при компьютерной обработке. Экспериментально подтверждена перспективность применения спектрофотометрического метода для определения концентрации паров воды в природном газе.
Гигрометр, спектрофотометрический газоанализатор, метод регуляризации, дифракционный монохроматор, природный газ, точка росы
Короткий адрес: https://sciup.org/14264613
IDR: 14264613
Текст научной статьи Спектрофотометрический газоанализатор-гигрометр "Зима"
В современной науке и в ее различных приложениях в промышленности измерение и контроль параметров газовых сред являются актуальной задачей. Важную роль при обеспечении качества и характеристик во многих технологических процессах играет влажность газов. Для измерения влажности используют различные физические методы: кулонометрический, конденсационный, резистивный, емкостной, оптический метод поглощения, а также метод измерения относительной влажности — психрометрический. При измерениях пользуются абсолютной и относительной влажностью, а также температурой точки росы. В работе [1] и ссылках в ней описываются отличительные особенности вышеперечисленных методов и специфика использования различных единиц влажности.
Для определения влажности природного газа наиболее широко используется конденсационный метод [2, 3, 4]. Конденсационным методом можно измерять характеристику газа — температуру точки росы как по воде, так и по углеводородам [5, 6] и непосредственно определять качественное состояние газовых смесей в различных термодинамических условиях. При этом измерение абсолютного содержания воды затруднено и становится невозможным при изменении соотношения углеводородных составляющих в природном газе или при добавлении в него ингибиторов гидратообра-зования [7].
Все более широкое распространение при контроле качества и параметров газовых смесей приобретают спектрофотометрические методы измерения. В [8] на дифракционном спектрофотометрическом газоанализаторе с многоходовой кюве- той при давлении 1 атм по спектрам поглощения определялись концентрации продуктов горения и пиролиза хвои кедра, а в [9] рассматривалась возможность непрерывного определения содержания паров воды в атмосферных условия для разных спектральных диапазонов от 900 до 3100 нм.
При спектрофотометрическом методе определения влажности газа в отличие от конденсационного даже при добавлении в природный газ ингибиторов гидратообразования [7] по спектрам поглощения измеряется и вычисляется величина, пропорциональная общему содержанию паров воды в объеме. В случае, когда в газе присутствует вода в паровой и капельной фазах, возникает необходимость применения других физических методов измерения концентрации воды [10, 11, 12].

Рис. 1. Спектрофотометрический гигрометр "Зима"
В Лаборатории молекулярной спектроскопии Института оптики атмосферы им. В.Е. Зуева был разработан спектрофотометрический гигрометр "Зима" (рис. 1) во взрывозащищенном исполнении. Применение спектроскопии в сочетании с математической обработкой данных с использованием экспериментальных и расчетных [13] спектров позволило решить задачу, связанную с определением концентрации паров воды в газе высокого давления [14].
Целью настоящей работы является рассмотрение отличительных особенностей определения абсолютной концентрации паров воды в природном газе высокого давления в области 1872 нм на спектрофотометрическом гигрометре с проточной кюветой.
ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ КАЛИБРОВОЧНЫХ ФУНКЦИЙ ГАЗОАНАЛИЗАТОРА
С развитием вычислительной техники и интенсивной компьютеризацией научного и промышленного оборудования возникает ситуация, когда компьютерная автоматизация спектрофотометров позволяет принципиально улучшить их характеристики. Для количественного газоанализа наибольшее внимание привлекают спектральные области, в которых регистрируемые газы имеют максимальные или значительные коэффициенты поглощения, а это, как правило, такие диапазоны, в которых спектральная информация собрана в базы данных и в настоящее время уточняется и расширяется (см., например, [15]). Интенсивности наиболее сильных молекулярных линий и полос описываются с высокой точностью, вполне достаточной для решения широкого круга прикладных задач. В связи с этим всегда существовал большой интерес к использованию этой информации при калибровке и непосредственно при эксплуатации спектральных приборов различного назначения [14, 16, 17]. Спектральные базы HITRAN [18], GEISA и HITEMP уже содержат несколько миллионов линий и довольно полно и точно описывают ИК-диапазон спектра. Они включают в себя достаточно достоверную экспериментальную и расчетную информацию о величине коэффициентов поглощения, уширения и сдвига для молекул. В перечень этих молекул входит значительная часть газов, в том числе метан и вода.
К сожалению, из-за неточностей в спектральных базах для параметров при больших давлениях при поиске функциональных зависимостей характеристик газов от их коэффициентов поглощения необходимо использовать значительное количество экспериментальных спектров. В то же время постоянное расширение и уточнение спектраль- ных данных для метана и воды позволяет все более эффективно использовать информационные системы для моделирования поглощения [13, 19, 20] в целях сокращения количества экспериментальных спектров, регистрируемых по эталонным газовым смесям, что значительно упрощает калибровку фотометрических измерителей влажности.
Для того чтобы информацию из спектральных баз данных, формируемых с использованием ин-тернет-информационной системы "Спектроскопия атмосферных газов" [13, 19] со сведениями о частотах, интенсивностях, температуре, коэффициентах уширения и сдвигов, использовать для определения концентраций интересующих газов и их смесей, модельные спектры приводились к единому виду с экспериментальными. Для этого выполнялась следующая последовательность шагов и операций [14]:
– определялось оптимальное соответствие банков данных для прибора таким параметрам, как диапазон, разрешение, аппаратная функция, ожидаемые концентрации и др.;
– на основе имеющихся спектральных баз генерировались банки данных образцов спектров газовых смесей с разрешением немного выше приборного с перекрытием всех необходимых концентрационных диапазонов, в том числе в сочетании с другими сопутствующими и мешающими газами;
– подбирались модели для учета нелинейного по шкале частот изменения разрешения;
– при изменении параметров с одновременным уменьшением разрешения экспериментальные и модельные спектры после самонормировки и фильтрации приводились к единому виду до совпадения преобразованных спектральных кривых.
Приборный банк данных образцов экспериментальных и модельных спектров паров воды и метана формировался для различных давлений и соотношений их содержания в смеси. Если известно, что исследуемое вещество является сочетанием нескольких известных и занесенных в банк данных калибровочных смесей, а его спектр является близким к линейной комбинации исходных спектров, тогда характеристики вещества могут вычисляться через концентрации исходных компонент. В предлагаемом алгоритме, концентрации базовых компонент вычисляются из системы уравнений включающей коэффициенты поглощения спектров в S точках, расположенных в выбранном спектральном диапазоне:
N
Я k j X T^ = I ( v), i = 1, S , j = 1
где Т j — элемент матрицы { Т у } ( i = 1, S ; j = 1, N , S > N , использовалось S = 100, a N от 2
до нескольких десятков) коэффициентов поглощения в точке i для базового спектра; k j — искомые концентрации; I ( ν i ) — коэффициенты поглощения в точке ν i для спектра исследуемого вещества; N — количество экспериментальных и модельных спектров в приборном банке данных.
Для получения физически осмысленных решений системы, содержащих только положительные значения k j , впервые для решения подобной спектроскопической задачи применяется метод регуляризации [21] в виде дополнительных уравнений-неравенств
k j > 0, j = 1, У .
А регуляризирующее слагаемое берется в виде
S
N
J ( k ) = Z i I ( v - ) - £ I j -( v )x k j *
i = 1
j = 1
N
+ E { A x ^ ( k j ) } , j =1v ;
где I ( νi ) коэффициенты поглощения анализируемого спектра на информативных частотах νi ; I j ( v i ) — коэффициенты поглощения на частотах ν i для экспериментального или расчетного спектра под номером j с известной величиной параметра или характеристики вещества (концентрации, проценты, температура и т. д.). Функция ξ ( kj ) отвечает за ограничение в отрицательной области значений kj :

Рис. 2. Функциональная оптическая схема спектрофотометрического гигрометра "Зима".
1 — двухпроходная газовая кювета высокого давления; 2 — сканирующий однолучевой монохроматор; 3 — источник излучения; 4 — сферическое зеркало;
5 — световод; 6, 7 — сферические зеркала; 8 — дифракционная решетка; 9 — фотоприемник
К k j ) =
0, если k j > 0, k j , если k j < 0.
Коэффициент регуляризации A выбирается таким, чтобы значения kj оказавшиеся отрицательными, не превышали по модулю требуемой ошибки определения концентраций. При А = 0 решение данной задачи будет совпадать с решением по методу наименьших квадратов.
В дальнейшем искомое значение характеристики f * для анализируемого образца определяется путем подстановки найденных коэффициентов концентрации kj контрольных газовых смесей и их наблюдаемых в эксперименте характеристик f j спектров под номерами j :
N f =т kjx fj- j=0
В представленном выше методе положительных концентраций, выбор настроечного параметра регуляризации А зависит от конкретной задачи, оптических параметров спектроанализатора и других особенностей, возникающих при нахождении
интересующих характеристик исследуемого вещества. В дальнейшем возможен поиск функциональных зависимостей по банкам данных с учетом совмещающих экспериментальные и модельные спектры параметров [14].
Для проведения анализа состава газов по спектрам можно использовать и другие математические методы. Среди них можно выделить алгоритм для разделения смесей произвольного состава [22, 23], основанный на статистическом методе Монте-Карло, который можно использовать для качественного и количественного анализа многокомпонентных смесей, а именно для восстановления спектров индивидуальных соединений и их концентраций по спектрам линейных смесей компонент. В [16] впервые был описан алгоритм поиска функциональных зависимостей характеристик вещества от спектров поглощения методом регрессионного анализа с регуляризацией параметров.
СПЕКТРОФОТОМЕТРИЧЕСКИЙ ГИГРОМЕТР ВЫСОКОГО ДАВЛЕНИЯ
Спектрометр представляет собой сканирующий однолучевой дифракционный монохроматор с газовой кюветой высокого давления. Принцип дей-
ствия основан на измерении и анализе спектров поглощения газа в ближней ИК-области. Параметры газов зависят от концентраций входящих в них компонент, содержание которых устанавливается по соотношениям интенсивностей поглощения на различных спектральных участках.
На рис. 2 приведена функциональная оптическая схема спектрофотометрического гигрометра "Зима". Спектрометр составляют двухпроходная газовая кювета высокого давления 1 с герметичными фланцами, сканирующий однолучевой монохроматор 2 с вращающейся дифракционной решеткой (600 штр./мм) и источник излучения 3 с галогеновой лампой. В кювете при давлении до 100 атм сформированный от лампы параллельный пучок света через входное окно попадает на сферическое зеркало 4 с фокусом 60 см, который и определяет длину оптического пути в кювете — за два прохода ~120 см. Сфокусированное зеркалом 4 излучение из кюветы через выходное окно попадает в световод 5. Монохроматор с базой 250 мм помещен в цилиндрический корпус с герметичными фланцами. Из световода излучение, попадая на сферическое зеркало 6 с фокусом 250 мм, формируется в параллельный пучок, падающий на вращающуюся с частотой ~ 1–5 Гц дифракционную решетку (50 × 50 мм). Далее от решетки излучение падает на сферическое зеркало 7 с фокусом 250 мм, а затем попадает на фотоприемник 9. После усиления и оцифровки спектр через Ethernet-интерфейс (LAN) [24] передается на компьютер для дальнейшей обработки. Оптическая схема спектрометра обеспечивает разрешение 8–10 см–1, что вполне достаточно для спектрофотометрического определения содержания паров воды в газе высокого давления. Блоки питания, управления и синхронизации, составляющие электрическую схему гигрометра, смонтированы в корпусе с монохроматором, а в его герметичном объеме при давлении 1 атм находится осушенный углекислый газ, от которого спектрофотометром регистрируется шесть реперов для коррекции частотной шкалы. На рис. 3 кривая 1 представляет собой комбинированный спектр поглощения паров воды (концентрация ~ 5500 мг/м3 в кювете с воздухом при давлении 10 атм) и углекислого газа (в монохроматоре при давлении 1 атм). После самонормиров-ки, фильтрации и логарифмирования [16] этот спектр принимает форму кривой 2, позволяющую газоанализатору работать с высокой точностью в автоматическом непрерывном режиме [9].
В диапазоне 1800–1940 нм с центром ~ 1872 нм регистрируется поглощение паров воды, находящихся в кювете, а с 1940 до 2090 нм — углекислого газа, находящегося в монохроматоре и имеющего в этой спектральной области три полосы поглощения, по которым производится калибровка

Рис. 3. Комбинированный спектр поглощения паров воды при концентрации ~ 5500 мг/м3 в кювете с воздухом при давлении 10 атм и углекислого газа в монохроматоре при давлении 1 атм.
1 — регистрируемый спектр; 2 — этот же спектр после самонормировки, фильтрации и логарифмирования частотной шкалы спектрофотометрического гигрометра.
Спектроанализатор может работать в непрерывном автоматическом режиме [25] с выдачей данных на сервер [17], в том числе через GSM модем. Он позволяет проводить измерение качественных и количественных характеристик газов, в том числе и многокомпонентных. Оригинальное программное обеспечение дает возможность проводить статистическое накопление, определять концентрации водяного пара по записанным в банке данных экспериментальным и модельным спектрам. Обработка информации производится с применением компьютерных программ на основе оригинальных алгоритмов и методов теории распознавания образов [16, 26].
Для количественного определения содержания паров воды в газе необходимо решить задачу определения концентрации для многокомпонентных смесей с перекрытием большого диапазона измеряемых коэффициентов поглощения. Эту задачу позволили решить спектроскопические методы анализа и математические алгоритмы автоматического поиска в спектрах информативных точек [16] в сочетании с моделью положительных концентраций с применением регуляризации.
Гигрометр "Зима" позволяет измерять концентрацию водяного пара по записанным в базу данных спектрам при различных концентрациях, давлениях и температурах исследуемого газа. Спектрофотометрический газоанализатор имеет взрывозащищенное исполнение и может применяться в соответствии с требованиями ГОСТ и Ру- ководства по эксплуатации во взрывоопасных зо- воопасных смесей. Гигрометр "Зима" имеет сле-нах помещений, где возможно образование взры- дующие характеристики:
-
1. Диапазон давлений газа, МПа
-
2. Тип гигрометра
-
3. Измеряемая концентрация паров воды, мг/м3
-
4. Пересчитанная из концентрации температура точки росы по воде в природном газе, °С
-
5. Абсолютная погрешность определения точки росы, °С
-
6. Рабочая температура среды, °С
-
7.Время проведения одного цикла измерений не более, мин
-
8. Время выхода на режим не более, мин
-
9. ТУ на выпуск, полученный на гигрометр
2.5–7.5 Проточный 30–40000
–35…+15
–20…+35
СШЖИ 2.844.015 ТУ
-
На рис. 4 приведен график изменения концентрации паров воды во время одного из циклов испытания реактора, повышающего потребительские и транспортировочные качества природного газа [27] на Мыльджинском газоконденсатном месторождении Томской области. При испытании реактора в разных режимах диапазон измеряемых концентраций содержания воды изменялся от ~ 100 мг/м3 до ~ 11 000 мг/м3. При переводе абсолютного содержания паров воды в природном газе в температуру точки росы по воде использовались значения температуры точки росы влаги природного газа, приведенных к давлению 3.92 МПа и концентрации паров воды. Диапазон измеряемых концентраций содержания воды по точке росы составлял от –40 до +8°С. При этом погрешность измерений составляла менее 1°С, а воспроизводимость не хуже 0.25°С.
ЗАКЛЮЧЕНИЕ
Cпектроскопический метод позволяет в непрерывном режиме определять по спектрам поглощения концентрацию паров воды в природном газе в области 1872 нм. Высокая чувствительность и селективность по газовым компонентам дали возможность перекрыть большой диапазон измеряемых концентраций воды (30–40000 мг/м3) при давлениях 2.5–7.5 МПа.
Спектрофотометрический гигрометр "Зима" в опытном режиме испытывался на одной из газоизмерительных станций (ГИС) "Тюменьтрансгаза" и успешно использовался на Мыльджинском газоконденсатном месторождении Томской области в качестве измерительного средства для контроля содержания паров воды при испытании реактора с УФ-излучением, повышающего потребительские и транспортировочные качества природного газа [27]. Была показана перспективность дальнейшего развития спектрофотометрического метода для решения широкого круга исследовательских и прикладных задач, где необходим контроль влажности.
Возможные области применения спектрофотометрического гигрометра — газовая, нефтяная и химическая промышленность и другие отрасли народного хозяйства, где необходим контроль концентрации паров воды в технологических процессах. Значительный интерес спектрофотометр может представлять при проведении научных исследований с целью изучения спектров поглощения газов при высоких давлениях, а также в качестве вспомогательного средства для экспериментального уточнения формул и таблиц пересчета показателей влажности на различные давления [28, 29].
Таким образом, объединение возможностей спектроскопии и математических методов обработки данных позволяет создавать автоматизированные приборы, которые способны намного по-

Рис. 4. Изменение концентрации паров воды, зарегистрированное спектрофотометрическим гигрометром "Зима" во время одного из циклов испытания реактора с УФ-излучением высить эффективность спектроскопических методов и значительно облегчить сложную работу, связанную с анализом спектров при контроле параметров природного газа как при его добыче, так и при транспортировке и переработке.