Спиральные параметры регулярных-спиралей в белках (часть 2)

Автор: Батхишиг Д., Муиддорж Б., Энхбаяр П.

Журнал: Вестник Бурятского государственного университета. Химия. Физика @vestnik-bsu-chemistry-physics

Рубрика: Химия

Статья в выпуске: 4, 2016 года.

Бесплатный доступ

Α-Cпираль, 310-спираль, π-спираль и -спираль наблюдались в белковых структурах. Они составляют 32% от остатков, 4%, 0,3% и 0,2%, соответственно. Однако эти проценты зависят от разрешения решаемых структур и способу присвоения вторичных структур. Возможно 2016, из отобранного набора в данных банк белков (PDB), содержащих 2901 белковые цепи с менее чем 25% идентичности последовательности и  1.6Å разрешающей способности (R-значения  0.25), использовать в этом анализе. Вторичные задания структуры выполняются DSSP, STRIDE и SECSTR для π-спиралей. Спиральные параметры шага, остатки на оборот, радиусы, хиральности и р = RMSD/(N-1)1/2 для p-спиралей определяются программой HELFIT. р-Значения, оценивающие спиральную регулярность и все π -спиралей с р  0.10Å, были идентифицированы как регулярные. Спиральные параметры белка p-спиралей сравнивались с данными канонических p-спиралей и других типов белковых спиралей.

Еще

Α-спиралей, π-спираль, спиральные параметры, регулярные спирали, белковые структуры

Короткий адрес: https://sciup.org/148317763

IDR: 148317763   |   DOI: 10.18101/2306-2363-2016-4-17-25

Текст научной статьи Спиральные параметры регулярных-спиралей в белках (часть 2)

Helix is one of two main types of secondary structures in proteins. Helices are usually designated as in based on the number of residues per turn (i) and the number of atoms in the ring joined by the backbone hydrogen bond (n) [1]. Pauling and Corey first hypothesized the α-helix (3.613) and the γ-helix (5.l17) structures [2]. Donohue later considered the possibility of other types of helices (2.2, 310, 4.314 and 4.416) [3]. Low and Baybutt also suggested the possibility of the 4.416-helix or π-helix [3]. The main stabilizing factor for helical structures in polypeptides is re- peated hydrogen bonds between main chain carbonyl oxygen (C=O) and amide hydrogen (NH) groups with the α-helix characterized by an (i ← i+4) pattern, the 310 and the π-helix by repealing (i ← i+3) and (i ← i+5) hydrogen bonds, respectively [4].

There are several programs perform assignments of secondary structures based on three-dimensional (3D) atomic coordinates of proteins [4-6]. Among these, DSSP [4] and STRIDE [5] are the most widely used [7]. DSSP identifies helices based on the repeating ( i←i+n ) hydrogen bonds with corresponding to n of 3, 4 and 5 for 3 10 , α- and π-helices, respectively [4, 8]. STRIDE uses both hydrogen bonds and main chain dihedral angles to define secondary structures [5]. DSSP program identified only 9 unique π-helices from the database of more than 6000 of proteins [9]. Fodje and Karadaghi defined 116 π-helices using their home made program, SECSTR, from the database of 932 high resolution 3D structures of proteins [7].

These different results can be explained by the following two reasons: 1) Number of solved 3D structures was insufficient by this time 2) Programs to assign of secondary structures use different methods.

We studied helical parameters of protein helices with HELFIT program and compared with the parameters of canonical π -helices.

Materials and Methods

Composition of database

The 16 May 2016 culled PDB data set, containing 2969 protein chains with less than 20% sequence identity and resolution 1.6 Å ( R -value 0.25), was used in this analysis.

DSSP program

DSSP performs secondary structure assignments by the bonding energy Е ≤-0.5 kcal/mоl between C=O of residue i and N–H residue n ( i i+n ). The optimal hydrogen bonding energy for mainchain-mainchain N—H···O hydrogen bonds Е m < -3 kcal/mol. Hydrogen bond energy depends on both electrostatic interaction N—H···O of atoms and of hydrogen bonds angle θ [4].

STRIDE program

STRIDE program is designed for protein secondary structure assignment from 3D atomic coordinates based on the combined use of hydrogen bond energy and statistically derived backbone torsional angle information [7]. The hydrogen bond energy E hb is calculated using the empirical energy function derived from the analysis of experimental data on hydrogen bond geometries in crystal structures of amino acids in polypeptide chains [10].

SECSTR program

SECSTR is a new addition to the DSSP program that is dedicated to identifying π-helices, which were seldom assigned by older versions of DSSP and STRIDE [7]. The secondary structure assignment methods based on hydrogen bond assignments (DSSP, STRIDE, and SECSTR) produced nearly identical assignments, with more than to 90% [6].

HELFIT program

HELFIT enables to calculate simultaneously all five of the helix parameters with high accuracy. The minimum number of data points required for the analysis is only four. HELFIT also calculates a parameter, p = RMSD / ( N -1)1/2, which estimates the regularity of helical structures independent of the number of data points, where RMSD is the root mean square distance from the best-fit helix to data points and N is the number of data points [11].

Results and Discussion

We identified 27, 22 and 340 π-helices from 2901 high resolution protein structures by DSSP, STRIDE and SECSTR programs, respectively. All π-helices are divided into two groups, regular and irregular, with p -value: p ≤ 0.10 Å regular and p >  0.10 Å irregular. 7 of 27, 5 of 22, and 76 of 340 helices are grouped as regular by the HELFIT program. In order to compare protein π-helices with the canonical π-helices the only parameters of regular π-helices are used for the further analysis (Table 1).

Table 1

Helical parameters of 86 regular π-helices in proteins identified by DSSP, STRIDE and SECSTR program

PDB _ID

Chain_Po sition

P (Å)

n

Δ z (Å) b

r (Å)

V c 3) a

p (Å)

Identified Program

1DJ0

A_81-87

5.01

4.18

1.20

2.58

25.06

0.10

SECSTR

1DK8

A_242-249

5.12

4.36

1.17

2.69

26.70

0.10

SECSTR

1ELK

A_95-101

5.24

4.42

1.19

2.70

27.15

0.10

SECSTR

1JET

A_301-308

4.82

4.44

1.09

2.80

26.74

0.09

SECSTR

1KJQ

A_119-125

5.10

4.30

1.19

2.67

26.56

0.09

SECSTR

1KK

O

A_199-205

4.99

4.53

1.10

2.81

27.33

0.09

DSSP, STRIDE, SECSTR

1NU

Y

A_1276-1282

5.30

4.64

1.14

2.87

29.56

0.10

SECSTR

1RK6

A_386-393

5.30

4.47

1.19

2.80

29.20

0.06

DSSP

1RK6

A_387-393

5.14

4.41

1.17

2.74

27.49

0.04

STRIDE

1RK6

A_384-393

5.22

4.37

1.19

2.71

27.56

0.06

SECSTR

1W5

R

A_58-64

5.17

4.37

1.18

2.73

27.70

0.08

SECSTR

1XG0

A_105-111

5.32

4.55

1.17

2.84

29.63

0.10

SECSTR

1XG

K

A_266-272

5.02

4.31

1.16

2.70

26.67

0.07

SECSTR

2BF

D

A_109-115±

5.20

4.50

1.16

2.80

28.46

0.10

SECSTR

2CI1

A_51-57

5.12

4.33

1.18

2.68

26.68

0.09

SECSTR

2DPL

A_68-74

5.17

4.42

1.17

2.77

28.20

0.03

SECSTR

2GZS

A_163-169

5.31

4.53

1.17

2.83

29.49

0.09

SECSTR

PDB _ID

Chain Po                        Δ z                 V               Identified Pro

P (Å)       n               r (Å)       c       p (Å)

sition                           (Å) b               (Å3) a              gram

2H1V

2A7_4264-       5.15     4.21     1.22    2.62    26.38    0.09 SECSTR

2JIS

2O0A

A_28-35     5.15     4.42     1.17    2.75    27.68    0.07   SECSTR

A 474-                               _                     SFCSTR

4A3_0424-       5.13     4.48     1.15     2.79    28.00    0.08    SECSTR

2P51

2A1_3207-       5.15     4.32     1.19    2.71     27.51     0.08 SECSTR

2P6 W 2PB D 2POF 2PY Q 2PY X 2PY X 2PY X 2RB K 2VL A 2WQ F 2XR Y 2Y53 3A0Y

1A6_0154-       5.18     4.38     1.18    2.73    27.69    0.08    SECSTR

A_88-94      5.24    4.42    1.19    2.77    28.58    0.09    SECSTR

A_37-43     5.29     4.52     1.17    2.81     29.03    0.10   SECSTR

B_61-67      5.17     4.39     1.18    2.76    28.18    0.02    DSSP

A 737-                                                     DSSP

2A3_9232-       5.09     4.42     1.15     2.75    27.36    0.06    DSSP

2A3_8232-       5.06    4.42     1.14    2.78    27.80    0.05    STRIDE

2A3_9232-       5.08     4.42     1.15     2.75    27.31     0.06    SECSTR

1A2_9122-       5.25     4.49     1.17    2.77    28.19    0.09    SECSTR

A_68-77      5.27    4.00    1.32    2.79    32.22    0.09    SECSTR

A_59-65      5.36    4.55     1.18    2.81     29.22    0.10    SECSTR

3A0_6300-       5.20    4.34     1.20    2.70    27.44    0.08    SECSTR

A_48-54     5.11     4.23     1.21     2.62    26.05    0.10   SECSTR

7A2_9723-       5.11     4.32     1.18    2.70    27.09    0.06    SECSTR

3BH Q 3H9C

1A3_4128-       5.07     4.40     1.15     2.77    27.78    0.08    SECSTR

3A9_1382-       5.28     4.44     1.19    2.75    28.25    0.09    SECSTR

3IT3

3OAJ

3OCJ

A_56-63     5.16    4.45    1.16    2.80    28.56    0.04   SECSTR

A_24-30     4.97    4.29    1.16    2.72    26.93    0.07   SECSTR

2A5_9253-       5.13     4.62     1.11     2.88    28.93    0.10    SECSTR

3OY V 3PB6 3PJP

2A3_3227-       5.49     4.41     1.24    2.74    29.36    0.08    SECSTR

X_93-99     5.25    4.54    1.16    2.83    29.10    0.06   SECSTR

А 1334-                       _                           SFCSTR

1A3_410334-      5.18     4.44     1.17    2.77    28.12    0.10    SECSTR

3Q28

2A8_6280-       5.30    4.50     1.18    2.81     29.22    0.08 SECSTR

3RRI 3S5 M

3T4L

A_22-28     5.17    4.43    1.17    2.77    28.13    0.06   SECSTR

6A9_8692-       5.24    4.45     1.18    2.76    28.18    0.09    SECSTR

1A7_4168-       5.29     4.45     1.19    2.77    28.66    0.05    SECSTR

3VE N 3WA 2

A 437-                        _                           SFCSTR

4A4_3437-       5.14    4.41     1.17    2.75    27.69    0.10    SECSTR

X 797-                                        _            DSSP

3X0_3297-       5.04    4.25     1.19    2.68    26.76    0.10    DSSP

PDB _ID

Chain_Po sition

P (Å)

n

Δ z (Å) b

r (Å)

V c 3) a

p (Å)

Identified Program

3ZB

O

A_94-100

5.22

4.50

1.16

2.82

28.98

0.08

SECSTR

4AY

O

A_122-128

5.18

4.28

1.21

2.65

26.70

0.10

SECSTR

4B1Y

B_88-94

5.22

4.42

1.18

2.76

28.26

0.09

SECSTR

4BR

C

A_359-365

5.06

4.35

1.16

2.76

27.84

0.05

SECSTR

4CB

U

A_89-95

5.22

5.07

1.03

2.72

23.93

0.06

SECSTR

4CD5

A_248-254

5.11

4.38

1.17

2.75

27.72

0.07

SECSTR

4CD5

A_350-356

5.25

4.55

1.15

2.81

28.62

0.09

SECSTR

4DJA

A_305-311

4.99

4.32

1.16

2.73

27.05

0.09

SECSTR

4DJA

A_405-412

5.10

4.39

1.16

2.75

27.60

0.10

SECSTR

4ES M

A_137-143

5.36

4.14

1.29

2.59

27.28

0.07

SECSTR

4EZI

A_128-135

5.02

4.35

1.15

2.72

26.82

0.09

SECSTR

4GV F

A_231-239

5.19

4.46

1.16

2.76

27.85

0.06

DSSP

4GV F

A_232-238

5.14

4.46

1.15

2.80

28.39

0.07

STRIDE

4GV F

A_229-239

5.16

4.44

1.16

2.77

28.01

0.05

SECSTR

4I3G

A_257-264

5.13

4.36

1.18

2.73

27.55

0.08

DSSP

4I3G

A_257-263

5.12

4.40

1.16

2.74

27.45

0.09

STRIDE

4I3G

A_253-264

5.21

4.38

1.19

2.71

27.44

0.09

SECSTR

4JA8

A_66-72

5.29

4.53

1.17

2.85

29.80

0.10

SECSTR

4LRT

A_267-273

5.28

4.46

1.18

2.78

28.74

0.09

SECSTR

4ME

2

A_192-198

4.86

4.47

1.09

2.81

26.97

0.09

SECSTR

4QB3

A_66-72

5.08

4.53

1.12

2.84

28.42

0.09

SECSTR

4R75

A_311-318

5.11

4.38

1.17

2.74

27.52

0.09

SECSTR

4U9H

L_127-133

5.07

4.54

1.12

2.85

28.50

0.07

SECSTR

4W7 L

A_373-379

5.23

4.53

1.15

2.81

28.64

0.08

SECSTR

4WRI

A_65-71

5.18

4.38

1.18

2.73

27.69

0.06

SECSTR

4XE M

A_120-126

5.15

4.33

1.19

2.69

27.04

0.08

SECSTR

4XFJ

A_68-74

5.30

4.45

1.19

2.74

28.09

0.10

SECSTR

4XQ7

A_217-223

5.17

4.49

1.15

2.79

28.16

0.09

SECSTR

4Z5S

A_108-115

5.22

4.40

1.19

2.73

27.78

0.09

SECSTR

4ZG W

A_115-121

5.29

4.53

1.17

2.80

28.76

0.10

SECSTR

PDB _ID

Chain_Po sition

P (Å)

n

Δ z (Å) b

r (Å)

V c 3) a

p (Å)

Identified Program

5A0Y

A_314-324

5.09

4.46

1.14

2.77

27.51

0.10

SECSTR

5AZ B

A_203-210

5.15

4.41

1.17

2.74

27.54

0.09

SECSTR

5BSR

A_240-247

5.12

4.33

1.18

2.68

26.68

0.10

SECSTR

5DA W

A_89-95

5.32

4.37

1.22

2.72

28.30

0.09

SECSTR

5DP2

A_143-149

5.18

4.44

1.17

2.78

28.33

0.06

SECSTR

5E8X

A_442-448

5.09

4.35

1.17

2.74

27.60

0.08

SECSTR

5EJ8

A_485-491

5.22

4.55

1.15

2.81

28.46

0.10

SECSTR

5HZ7

A_280-286

5.25

4.49

1.17

2.80

28.80

0.08

SECSTR

Average

5.17±0

4.42±0

1.17±0

2.75±0

27.89±

0.08±0

.11

.13

.04

.06

1.09

.02

Canonical π-helix

5.16

4.40

1.15

2.68

25.9

a Voronoi volume ( V c = π·

r 2·Δz);

b Helix rise per residue Δ z

=P / n ;

Total of 88 regular π-helices are 7, 5 and 76 identified by DSSP, STRIDE and SECSTR program respectively. The π-helix is identified at position 199-205 of A chain in 1KKO protein by the three programs [12-18].

Helix radius and Voronoi volume of real π-helices are larger than that of canonical π-helix. The other helix parameters are close to the parameters of canonical π-helix. Average length is 7.47 residues and length is in range of 7-12 residues (Table 2).

Table 2

Average of helical parameters for regular π-helices in proteins and standard deviations

Average

P › (Å)

n

‹Δ z ›(Å)

r › (Å)

V c ›(Å3)

p › (Å)

π-helices

5.13±0.

4.41±0.

1.16±0.

2.76±0.

27.75±0.

0.07±0.

(DSSP)

10

09

03

04

78

03

π-helices

5.09±0.

4.44±0.

1.15±0.

2.77±0.

27.69±0.

0.07±0.

(STRIDE)

06

05

02

03

38

02

π-helices

5.17±0.

4.42±0.

1.17±0.

2.75±0.

27.90±1.

0.08±0.

(SECSTR)

11

13

04

06

13

02

Standard deviations of helical parameters for π-helices identified by SECSTR program are larger than DSSP and STRIDE programs. Also, average values of the helix radius r and number of residue per turn n are approximate to each for the three programs.

Fig. The Ramachandran-map of regular π-helices in proteins. The φ, ψ angles are indicated in panels which regular π-helices identified by A) DSSP, B) STRIDE and C) SECSTR, respectively. The abscissa is φ; the ordinate axis is ψ. The φ, ψ of residues at N c and C c are not shown.

Average dihedral angles of regular π-helices were determined at each for DSSP (-77°±14°, -50°±11°), STRIDE (-77°±15°, -51°±12°) and SECSTR (-81°±18°, -44°±21°) programs. The average values of backbone dihedral angles (φ, ψ) of all regular π-helices observed were found to be (φ, ψ) = (-81°, -45°) with standard deviations (σ φ , σ ψ ) = (17°, 20°). The average of dihedral angle is larger than canonical π-helix (-57°, -70°). The φ, ψ angles of regular π-helices are located on an allowed regions for other residues except for glycine, were removed from the calculation (Fig.).

Conclusion

  • •    2901 3D structures of high resolution protein structures were downloaded

from Protein Data Bank (PDB) and there are 389 π-helices. In average, every protein contains 0.13 π-helices.

  •    All π-helices are divided into two groups, regular and irregular. 89 π-helices are regular among the total of 389 π-helices, 4.37%. Helix parameters of all regular π-helices are used for further analysis.

  •    Radii of all π-helices and Voronoi volume are larger than that of canonical π-helices and all the helical parameters are comparable with those of canonical helices.

Список литературы Спиральные параметры регулярных-спиралей в белках (часть 2)

  • Donohue J. Hydrogen Bonded Helical Configurations of the Polypeptide Chain // Proc. Natl. Acad. Sci. USA. - 1953. - V. 39, № 6. - P. 470-478.
  • Pauling L., Corey R. B., Branson H. R. The structure of proteins; two hydrogen- bonded helical configurations of the polypeptide chain // Proc. Natl. Acad. Sci. USA. - 1951. - V. 37, № 4. - P. 205-211.
  • Low B. W., Baybutt R. B. The π-helix a hydrogen bonded configuration of the polypeptide chain // J. of the American Chemical Society. - 1952. - V. 74(22). - P. 5806-5807.
  • ВЕСТНИК БУРЯТСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА ХИМИЯ. ФИЗИКА Вып. 4. 2016
  • Kabsch W., Sander C. How good are predictions of protein secondary structure? // FEBS Lett. - 1983. - 155(2). - P. 179-82.
Статья научная