Способы сжигания твердотопливных смесей в энергетических установках (обзор)

Автор: Жуйков А.В., Матюшенко А.И., Кулагин В.А., Степанов С.Г., Кузнецов П.Н.

Журнал: Журнал Сибирского федерального университета. Серия: Техника и технологии @technologies-sfu

Рубрика: Исследования. Проектирование. Опыт эксплуатации

Статья в выпуске: 7 т.16, 2023 года.

Бесплатный доступ

В работе представлен один из наиболее доступных способов перехода к ресурсосберегающей и экологически безопасной выработке тепловой и электрической энергии угольными объектами теплоэнергетики, заключающийся в сжигании смесей топлив. Проведен обзор существующего опыта перевода действующего теплотехнического оборудования как в России, так и за рубежом, подробно описаны основные трудности в процессе сжигания твердотопливных смесей. Наиболее эффективные смеси по своим экологическим показателям получаются на основе угля и биомассы с ее добавлением по теплосодержанию не более 20 %. Горение остается одним из самых сложных и не исследованных процессов, а при совместном горении нескольких твердых топлив происходят дополнительные взаимодействия, которые влияют на основные характеристики горения, поэтому в работе отдельно рассмотрены методики исследований процесса горения и оборудование для проведения опытного сжигания твердотопливных смесей.

Еще

Уголь, биомасса, топливная смесь, горение, термогравиметрический анализ, ресурсосбережение, экологическая безопасность

Короткий адрес: https://sciup.org/146282724

IDR: 146282724

Список литературы Способы сжигания твердотопливных смесей в энергетических установках (обзор)

  • Росляков П.В., Рыбаков Б. А., Савитенко М. А., Ионкин И. Л., Лунинг Б. Оценка возможностей снижения выбросов парниковых газов при сжигании топлив в котлах ТЭС и котельных. Теплоэнергетика, 2022, 9, 97–106 [Roslyakov P. V., Rybakov B. A., Savitenko M. A., Ionkin I. L., Luning B. Evaluation of the possibilities of reducing greenhouse gas emissions during the combustion of fuels in boilers of TPPs and boiler houses. Thermal power engineering, 2022, 9, 97–106 (in Rus.)]
  • Макаров А. А. Сценарии и цена перехода к низкоуглеродной энергетике в России. Теплоэнергетика, 2022, 10, 5–16 [Makarov A. A. Scenarios and cost of transition to low-carbon energy in Russia. Thermal power engineering, 2022, 10, 5–16 (in Rus.)]
  • Романова Т. Н. Современное состояние вопроса газификации природным газом. Вестник ПНИПУ. Строительство и архитектура, 2019, 10(1), 80–90 [Romanova T. N. The current state of the issue of gasification with natural gas. Bulletin of PNIPU. Construction and architecture, 2019, 10(1), 80–90 (in Rus.)]
  • Sahu S.G., Chakraborty N., Sarkar P. Coal–biomass co-combustion: An overview. Renew. Sust. Energ. Rev., 2014, 39, 575–586
  • Al-Mansour F., Zuwala J. An evaluation of biomass co-firing in Europe. Biomass & bioenergy, 2010, 34, 620–629
  • Zhou C., Liu G., Wanga X., Qi C. Co-combustion of bituminous coal and biomass fuel blends: Thermochemical characterization, potential utilization and environmental advantage. Bioresour. Technol., 2016, 218, 418–427
  • Алехнович А.Н., Богомолов В. В., Артемьева Н. В. Совместное факельное сжигание биомасс с углем. Теплоэнергетика, 2001, 2, 26–33 [Alekhnovich A. N., Bogomolov V. V., Artem’eva N. V. Co-flaring of biomass with coal. Thermal power engineering, 2001, 2, 26–33 (in Rus.)]
  • Biswas S., Sharma D. K. A review on the co-processing of biomass with other fuels sources. Int. J. Green Energy, 2021, 18, 793–811
  • Ильюшенко Д.А., Бирман А. Р., Локштанов Б. М., Орлов В. В., Гусева Т. А., Иванов В. А., Никифорова В. А. Технологии производства топливной щепы из лесосечных отходов при заготовке древесины 250–300 тыс.пл.м3 в год. Системы. Методы. Технологии, 2021, 2(50), 175–184 [Ilyushenko D. A., Birman A. R., Lokshtanov B. M., Orlov V. V., Guseva T. A., Ivanov V. A., Nikiforova V. A. Technologies for the production of fuel chips from logging waste when harvesting wood 250–300 thousand square meters per year. Systems. Methods. Technologies, 2021, 2(50), 175–184 (in Rus.)]
  • Saidur R., Abdelaziz E. A., Demirbas A., Hossain M. S., Mekhilef S. A review on biomass as a fuel for boilers. Renew. Sust. Energ. Rev., 2011, 15(5), 2262–2289
  • Рябов Г. А. Развитие технологий совместного сжигания угля и биомассы. Энергетика за рубежом. Приложение к журналу «Энергетик», 2022, 3, 2–40 [Ryabov G. A. Development of co-combustion technologies for coal and biomass. Energy abroad. Supplement to the magazine “Energetik”, 2022, 3, 2–40 (in Rus.)]
  • Кулагина Л.В., Штым К. А., Кириллова И. В. Совершенствование технологии производства тепловой энергии с использованием биомассы. Информационные и математические технологии в науке и управлении, 2022, 2(26), 104–114 [Kulagina L. V., Shtym K. A., Kirillova I. V. Improving the technology for the production of thermal energy using biomass. Information and mathematical technologies in science and management, 2022, 2(26), 104–114 (in Rus.)]
  • Kulagina L., Yenutina T., Kirillova I. Increasing the energy efficiency and environmental safety of the operation of small-volume furnaces by adding a water-fuel mixture and organic components. E 3S Web of Conferences, 2021, 295, 02002
  • Бесценный И.В., Бондзик Д. Л., Щудло Т. С., Дунаевская Н. И. Исследование синергетических эффектов при факельном сжигании угольных смесей. Современная наука: идеи, исследования, результаты, технологии, 2011, 3(8), 119–124 [Bestsenny I. V., Bondzik D.L, Shchudlo T. S., Dunaevskaya N. I. Investigation of synergistic effects during flaring of coal mixtures. Modern science: ideas, research, results, technologies, 2011, 3(8), 119–124 (in Rus.)]
  • Капустянский А. А. Исследование факельного сжигания непроектных бинарных угольных смесей в паровых котлах. Теплоэнергетика, 2017, 7, 83–90 [Kapustyansky A. A. Study of flaring of non-design binary coal mixtures in steam boilers. Thermal power engineering, 2017, 7, 83–90 (in Rus.)]
  • Жуйков А.В., Карловский А. И., Матюшенко А. И., Гребеньков П. Ю., Козлов С. Г., Выхристюк М. Н., Логинов Д. А. Опыт факельного сжигания смеси бурых углей на Железногорской ТЭЦ. Теплоэнергетика, 2022, 5, 58–64 [Zhuykov A. V., Karlovskiy A. I., Matyushenko A. I., Greben'kov P.YU., Kozlov S. G., Vykhristyuk M. N., Loginov D. A. Experience in flaring a mixture of brown coals at the Zheleznogorsk CHPP. Thermal power engineering, 2022, 5, 58–64 (in Rus.)]
  • Гребеньков П.Ю., Козлов С. Г., Выхристюк М. Н., Худяков И. А., Концевой А. А. Использование угля марки 3БР на котлах БКЗ‑160–1,4–5 с мельницами-вентиляторами и газовой сушкой. Электрические станции, 2016, 11, 13–18 [Grebenkov P. Yu., Kozlov S. G., Vykhristyuk M. N., Khudyakov I. A., Kontsevoi A. A. The use of 3BR grade coal on BKZ‑160–1.4–5 boilers with fan mills and gas drying. Power stations, 2016, 11, 13–18 (in Rus.)]
  • Дремичева Е. С. Использование твердотопливных композиций при совместном сжигании на объектах малой энергетики. Промышленная энергетика, 2021, 8, 48–56 [Dremicheva E. S. The use of solid fuel compositions for co-firing at small power facilities. Industrial Energy, 2021, 8, 48–56 (in Rus.)]
  • Сосин Д.В., Литун Д. С., Рыжий И. А., Штегман А. В., Шапошников Н. А. Опыт сжигания лузги подсолнечника в пылеугольных котлах Кумертауской ТЭЦ. Теплоэнергетика, 2020, 1, 15–22 [Sosin D. V., Litun D. S., Ryzhiy I. A., Shtegman A. V., Shaposhnikov N. A. Experience in burning sunflower husks in pulverized coal boilers at the Kumertau CHPP. Thermal power engineering, 2020, 1, 15–22 (in Rus.)]
  • Кудряшовa А.Н., Мехряков А. Д., Кочеткова О. Н. Особенности совместного сжигания угля и древесных отходов. Системы. Методы. Технологии, 2017, 1, 78–84 [Kudryashova A. N., Mekhryakov A. D., Kochetkova O. N. Features of joint combustion of coal and wood waste/ Systems. Methods. Technologies, 2017, 1, 78–84 (in Rus.)]
  • Glushkov D.O., Matiushenko A. I., Nurpeiis A. E., Zhuikov, A. V. An experimental investigation into the fuel oil-free start-up of a coal-fired boiler by the main solid fossil fuel with additives of brown coal, biomass and charcoal for ignition enhancement, Fuel Process. Technol., 2021, 223, 106986
  • Бесценный И.В., Щудло Т. С., Дунаевская Н. И., Топал А. И. Исследование особенностей горения смесей коксов углей различной степени метаморфизма и коксов биомассы. Теплоэнергетика, 2013, 12, 4–8 [Bestsennyy I. V., Shchudlo T. S., Dunayevskaya N. I., Topal A. I. Investigation of the combustion features of mixtures of coal cokes of various degrees of metamorphism and biomass cokes. Thermal power engineering, 2013, 12, 4–8 (in Rus.)]
  • Liu Q., Zhong W., Yu A., Wang C-H. Co-firing of coal and biomass under pressurized oxy-fuel combustion mode: Experimental test in a 10 kWth fluidized bed: Nitrogen and sulfur pollutants, J. Chem. Eng., 2022, 431(4), 133457
  • Wang S., Zou C., Lou C., Yang H., Pu Y., Luo J., Peng C., Wang C., Li Z. Influence of the synergistic effects between coal and hemicellulose/cellulose/lignin on the co-combustion of coal and lignocellulosic biomass, Fuel, 2022, 311, 122585
  • Wang X., Hu Z., Wang G., Luo X., Ruan R., Jin Q., Tan H. Influence of coal co-firing on the particulate matter formation during pulverized biomass combustion, J. Energy Inst., 2019, 92(3), 450–458
  • Glushkov D.O., Kuznetsov G. V., Chebochakova D. A., Lyakhovskaya O. E., Anufriev I. S., Shadrin E. Yu. Experimental study of coal dust ignition characteristics at oil-free start-up of coal-fired boilers, Appl. Therm. Eng. 2018, 142, 371–379
  • Жуйков А.В., Глушков Д. О., Цепенок А. И., Плешко А. О. Интенсификация процесса воспламенения каменного угля путем добавления биомассы в условиях факельного сжигания. Химия твердого топлива, 2023, 5, 55–68 [Zhuykov A. V., Glushkov D. O., Tsepenok A. I., Pleshko A. O. Intensification of coal ignition process by adding biomass under flaring conditions. Chemistry of solid fuels, 2023, 5, 55–68 (in Rus.)]
  • Sarroza A.C., Bennet T. D., Eastwick C., Liu H. Characterising pulverised fuel ignition in a visual drop tube furnace by use of a high-speed imaging technique, Fuel Process. Technol., 2017, 157, 1–11
  • Xu S., Liu J., Cao W., Li Y., Cao W. Experimental study on the minimum ignition temperature and combustion kinetics of coal dust/air mixtures, Powder Technol., 2017, 317, 154–161
  • Cao W., Cao W., Peng Y., Qiu S., Miao N., Pan F. Experimental study on the combustion sensitivity parameters and pre-combusted changes in functional groups of lignite coal dust, Powder Technol., 2015, 283, 512–518
  • Addai E.K., Gabel D., Kamal M., Krause U. Minimum ignition energy of hybrid mixtures of combustible dusts and gases, Process Saf. Environ. Prot., 2016, 102, 503–512
  • Wu D., Norman F., Verplaetsen F., Van den Bulck E. Experimental study on the minimum ignition temperature of coal dust clouds in oxy-fuel combustion atmospheres, J. Hazard. Mater., 2016, 307, 274–280
  • Ajrash M.J., Zanganeh J., Moghtaderi B. Experimental investigation of the minimum auto-ignition temperature (MAIT) of the coal dust layer in a hot and humid environment, Fire Saf. J., 2016, 82, 12–22
  • Joshi K.A., Raghavan V., Rangwala A. S. An experimental study of coal dust ignition in wedge shaped hot plate configurations, Combust. Flame, 2012, 159(1), 376–384
  • Ye B., Zhang R., Cao J., Lei K., Liu D. The study of co-combustion characteristics of coal and microalgae by single particle combustion and TGA methods, J. Energy Inst., 2020, 93, 508–517
  • Li H., Chi H., Han H., Hu S., Song G., Wang Y., He L., Wang Y., Su S., Xiang J. Comprehensive study on co-combustion behavior of pelletized coal-biomass mixtures in a concentrating photothermal reactor, Fuel Process. Technol., 2021, 211, 106596
  • Moon C., Sung Y., Ahn S., Kim T., Choi G., Kim D. Effect of blending ratio on combustion performance in blends of biomass and coals of different ranks, Exp. Therm. Fluid Sci., 2013, 47, 232–240
  • Yang Z., Bai M., Han T., Bai X., Tang X., Duan E., Kang A., Zheng Z., Cheng F. Application potential of antibiotic fermentation residue for co-combustion with coal: Thermal behavior, gaseous products, and kinetics, Fuel, 2023, 335, 126953
  • Ларина О.М., Синельщиков В. А., Сычев Г. А. Термогравиметрический анализ топливных смесей из биомассы и высокозольных углесодержащих отходов. Теплофизика высоких температур, 2020, 5(58), 782–788 [Larina O. M., Sinelshchikov V. A., Sychev G. A. Thermogravimetric analysis of fuel mixtures from biomass and high-ash coal-containing waste. Thermophysics of High Temperatures, 2020, 5(58), 782–788 (in Rus.)]
  • Zhang X., Li Y., Zhang X., Ma P., Xing X. Co-combustion of municipal solid waste and hydrochars under non-isothermal conditions: Thermal behaviors, gaseous emissions and kinetic analyses by TGA–FTIR, Energy, 2023, 265, 126373
  • Fan Y., Yu Z., Fang S., Lin Y., Lin Y., Liao Y., Ma X. Investigation on the co-combustion of oil shale and municipal solid waste by using thermogravimetric analysis, Energy Convers Manag, 2016, 117, 367–374
  • Li X., Miao W., Lv Y., Wang Y., Gao C., Jiang D. TGA-FTIR investigation on the co-combustion characteristics of heavy oil fly ash and municipal sewage sludge, Thermochim Acta, 2018, 666, 1–9.
  • Ni Z., Song Z., Bi H., Jiang C., Sun H., Qiu Z., He L., Lin Q. The effect of cellulose on the combustion characteristics of coal slime: TG-FTIR, principal component analysis, and 2D-COS, Fuel, 2023, 333, 126310
  • Chen Z., Chen Z., Liu J., Zhuang P., Evrendilek F., Huang S., Chen T., Xie W., He Y., Sun S. Optimizing co-combustion synergy of soil remediation biomass and pulverized coal toward energetic and gas-to-ash pollution controls, Sci. Total Environ., 2023, 857, 159585
  • Armakan S., Civan M., Yurdakul S. Determining co-combustion characteristics, kinetics and synergy behaviors of raw and torrefied forms of two distinct types of biomass and their blends with lignite, J. Therm. Anal. Calorim., 2022, 147(22), 12855–12869
  • Wang C., Wang F., Yang Q., Liang R. Thermogravimetric studies of the behavior of wheat straw with added coal during combustion, Biomass & bioenergy, 2009, 33(1), 50–56
  • Nie Y., Deng M., Shan M., Yang X. Evaluating the impact of wood sawdust and peanut shell mixing ratio on co-combustion performance, Fuel, 2022, 324, 124667
  • Zhuikov A.V., Glushkov D. O., Kuznetsov P. N., Grishina I. I., Samoilo A. S., Ignition of two-component and three-component fuel mixtures based on brown coal and char under slow heating conditions, J. Therm. Anal. Calorim., 2022, 147, 11965–11976
  • Yang Z., Zhang S., Liu L., Li X., Chen H., Yang H., Wang X. Combustion behaviours of tobacco stem in a thermogravimetric analyser and a pilot-scale fluidized bed reactor, Bioresour. Technol., 2012, 110, 595–602
  • Liang W., Jiang C., Wang G., Ning X., Zhang J., Guo X., Xu R., Wang P., Ye L., Li J., Wang C. Research on the co-combustion characteristics and kinetics of agricultural waste hydrochar and anthracite, Renew. Energy, 2022, 194, 1119–1130
  • Wang C., Wang C., Tang G., Zhang J., Gao X., Che D. Co-combustion behaviors and NO formation characteristics of semi-coke and antibiotic filter residue under oxy-fuel condition, Fuel, 2022, 319, 123779
  • Ye L., Zhang J., Xu R., Ning X., Zhang N., Wang C., Mao X., Li J., Wang G., Wang C. Co-combustion kinetic analysis of biomass hydrochar and anthracite in blast furnace injection, Fuel, 2022, 316, 123299
  • Xiao Z., Wang S., Luo M., Cai J. Combustion characteristics and synergistic effects during co-combustion of lignite and lignocellulosic components under oxy-fuel condition, Fuel, 2022, 310, 122399
  • Rago Y.P., Collard F.-X., Görgens J. F., Surroop D., Mohee R. Co-combustion of torrefied biomass-plastic waste blends with coal through TGA: Influence of synergistic behavior, Energy, 2022, 239, 121859
  • Liu Y., Tan W., Liang S., Bi X, Sun R, Pan X. Comparative study on the co-combustion behavior of torrefied biomass blended with different rank coals, Biomass Conv. Bioref., 2022
  • Yu D., Chen M., Wei Y., Niu S., Xue F. An assessment on co-combustion characteristics of Chinese lignite and eucalyptus bark with TG-MS technique, Powder Technol., 2016, 294, pp. 463–471
  • Жуйков А.В., Фетисова О. Ю., Глушков Д. О. Термический анализ процесса горения бурого угля, сосновых опилок, картона и их смесей. Химия твердого топлива, 2022, 4, 54–61 [Zhuikov A. V., Fetisova O. Yu., Glushkov D. O. Thermal analysis of the combustion process of brown coal, pine sawdust, cardboard and their mixtures. Chemistry of solid fuels, 2022, 4, 54–61(in Rus.)]
  • Cong K., Zhang Y., Han F., Li Q. Influence of particle sizes on combustion characteristics of coal particles in oxygen-deficient atmosphere, Energy, 2019, 170, 840–848
  • Yurdakul S., Gurel B., Varol M., Gurbuz H., Kurtuluş K. Investigation on thermal degradation kinetics and mechanisms of chicken manure, lignite, and their blends by TGA, Environ. Sci. Pollut. Res., 2021, 28(45), 63894–63904
  • Xinjie L., Shihong Z., Xincheng W., Jinai S., Xiong Z., Xianhua W., Haiping Y., Hanping C. Co-combustion of wheat straw and camphor wood with coal slime: Thermal behaviour, kinetics, and gaseous pollutant emission characteristics, Energy, 2021, 234, 121292
  • Li W., Huang Y., Xie J., Lang L., Bu W., Jiang Y., Wang Y., Yin X. Assessment of Flammulina velutipes residue as potential fuels for co-combustion with pine sawdust from characteristics of combustion process, flue gases and ashes, J. Anal. Appl. Pyrolysis, 2021, 158, 105156
  • Sezer S., Kartal F., Ozveren U. The investigation of co-combustion process for synergistic effects using thermogravimetric and kinetic analysis with combustion index, Therm. Sci. Eng. Prog., 2021, 23, 100889
  • Liu H., Zhang S., Feng S., Jia C., Guo S., Sun B., Wang Q. Combustion characteristics and typical pollutant emissions of corn stalk blending with municipal sewage sludge, Environ. Sci. Pollut. Res., 2021, 28(8), 9792–9805
  • Chen L., Wen C., Wang W., Liu T., Liu E., Liu H., Li Z. Combustion behaviour of biochars thermally pretreated via torrefaction, slow pyrolysis, or hydrothermal carbonisation and co-fired with pulverised coal, Renew. Energy, 2020, 161, 867–877
  • Miranda M.T., Arranz J. I., Roman S., Rojas S., Montero I., Lopez M., Cruz J. A. Characterization of grape pomace and pyrenean oak pellets, Fuel Process. Technol., 2011, 92(2), 278–283
  • Ghetti P., Ricca L. Thermal analysis of biomass and corresponding pyrolysis products, Fuel, 1996, 75(5), 565–573
  • Guo Q., Cheng Z., Chen G., Yan B., Hou L., Ronsse F. Optimal strategy for clean and efficient biomass combustion based on ash deposition tendency and kinetic analysis, J. Clean. Prod., 2020, 271, 122529
  • Zhuikov A.V., Mokhirev A. P., Tarasov I. V., Nazirov R. A., Zyryanov M. A. Combustion Characteristics of Larch Sawmill Wastes and Their Partial Gasification Products, Coke Chem., 2022, 65(9), 412–417.
  • Hillig D.M., Pohlmann J. G., Manera C., Perondi D., Pereira F. M., Altafini C. R., Godinho M. Evaluation of the structural changes of a char produced by slow pyrolysis of biomass and of a high-ash coal during its combustion and their role in the reactivity and flue gas emissions, Energy, 2020, 202, 117793
  • Guo F., He Y., Hassanpour A., Gardy J., Zhong Z. Thermogravimetric analysis on the co-combustion of biomass pellets with lignite and bituminous coal, Energy, 2020, 197, 117147
  • Жуйков А.В., Глушков Д. О. Характеристики совместного горения бурого угля и сухих остатков сточных вод в условиях неизотермического нагрева. Химия твердого топлива, 2022, 5, 45–51 [Zhuikov A. V., Glushkov D. O. Characteristics of co-combustion of brown coal and dry wastewater residues under non-isothermal heating conditions. Chemistry of solid fuels, 2022, 5, 45–51 (in Rus.)]
  • Isaac K., Bada S. O. The co-combustion performance and reaction kinetics of refuse derived fuels with South African high ash coal, Heliyon, 2020, 6(1), e03309
  • Chen C., Huang Y., Yang S., Qin S., Chen F. Effect of oxygen enriched atmospheres on combustion of bagasse, coal and theirs blends by thermogravimetric analysis. J. Environ. Chem. Eng., 2020, 8, 104398
  • Chen C., Qin S., Chen F., Lu Z., Cheng Z. Co-combustion characteristics study of bagasse, coal and their blends by thermogravimetric analysis, J. Energy Inst., 2019, 92, 364–369
  • Liu X., Chen M., Wei Y. Assessment on oxygen enriched air co-combustion performance of biomass/bituminous coal, Renew. Energy, 2016, 92, 428–436
  • Liu Z., Li W., Zhang Y., Wang J., Orndorff W., Pan W-P. Influence of biomass on coal combustion based on thermogravimetry and Fourier transform infrared spectroscopy, J. Therm. Anal. Calorim., 2015, 122, 1289–1298
  • Chen J., Liu J., He Y., Huang L., Sun S., Sun J., Chang K., Kuo J., Huang S., Ning X. Investigation of co-combustion characteristics of sewage sludge and coffee grounds mixtures using thermogravimetric analysis coupled to artificial neural networks modeling, Bioresour. Technol., 2017, 225, 234–245
  • Alobaid F., Busch J-P., Stroh A., Strohle J., Epple B. Experimental measurements for torrefied biomass Co-combustion in a 1 MWth pulverized coal-fired furnace, J. Energy Inst., 2020, 93, 833–846
  • Andersen K.H., Frandsen F. J., Hansen P. F.B., Wieck-Hansen K., Rasmussen I., Overgaard P., Dam-Johansent K. Deposit formation in a 150 MWe utility PF-Boiler during co-combustion of coal and straw, Energy and Fuels. 2000, 14(4), 765–780
  • Hughes E.E., Tillman D. A. Biomass cofiring: status and prospects 1996. Fuel Process. Technol., 1998, 54(1–3), 127–142
  • Vekemans O., Laviolette J., Chaouki J. Co-combustion of coal and waste in pulverized coal boiler, Energy, 2016, 94, 742–754
  • Drosatos P., Nikolopoulos N., Karampinis E., Grammelis P., Kakaras E. Comparative investigation of a co-firing scheme in a lignite-fired boiler at very low thermal-load operation using either pre-dried lignite or biomass as supporting fuel, Fuel Process. Technol., 2018, 180, 140–154
  • Росляков П.В., Зайченко М. Н., Мельников Д. А., Верещетин В. А., Attikas Raivo. Использование углей для совместного сжигания с эстонскими сланцами. Теплоэнергетика, 2016, 3, 34–42 [Roslyakov P. V., Zaychenko M. N., Mel’nikov D.A., Vereshchetin V. A., Attikas Raivo. Use of coals for co-firing with Estonian oil shale. Thermal power engineering, 2016, 3, 34–42 (in Rus.)]
  • Sankar G., Santhosh Kumar D., Balasubramanian K. R. Computational modeling of pulverized coal fired boilers – A review on the current position, Fuel, 2019, 236, 643–665
  • Swieboda T., Krzyzynska R., Bryszewska-Mazurek A., Mazurek W., Czaplinski T., Przygoda A. Advanced approach to modeling of pulverized coal boilers for SNCR process optimization – review and recommendations, Int. J. Thermofluids, 2020, 7–8, 100051
  • Smith J.D., Suo-Antilla A., Sreedharan V. Transient LES based CFD modeling of coal-biomass co-firing combustion, Fuel Process. Technol., 2019, 193, 187–196
  • Майданик М.Н., Вербовецкий Э. Х., Тугов А. Н. Предварительная оценка возможности перевода котлов тепловых электрических станций на сжигание альтернативного угля. Теплоэнергетика, 2021, 9, 33–42 [Maidanik M. N., Verbovetsky E. Kh., Tugov A. N. Preliminary assessment of the possibility of transferring boilers of thermal power plants to burning alternative coal. Thermal power engineering, 2021, 9, 33–42 (in Rus.)]
  • Magalhaes D., Kazanc F. Influence of biomass thermal pre-treatment on the particulate matter formation during pulverized co-combustion with lignite coal, Fuel, 2022, 308, 122027
  • Dafnomilis I., Lodewijks G., Junginger M., Schott D. L. Evaluation of wood pellet handling in import terminals, Biomass & Bioenergy, 2018, 117, 10–23
  • Матюшенко А.И., Жуйков А. В., Землянский Н. А., Логинов Д. А. Проблемы перевода угольных ТЭЦ на непроектные топлива. Промышленная энергетика, 2022, 4, 36–43 [Matyushenko A. I., Zhuikov A. V., Zemlyansky N. A., Loginov D. A. Problems of conversion of coal-fired thermal power plants to non-design fuels. Industrial Energy, 2022, 4, 36–43 (in Rus.)]
  • Karampinis E., Grammelis P., Agraniotis M., Violidakis I., Kakaras E. Co-firing of biomass with coal in thermal power plants: technology schemes, impacts, and future perspectives, Wiley Interdiscip. Rev. Energy Environ., 2014, 3, 384–399
  • Li K., Zeng Y. Corrosion of heat exchanger materials in co-combustion thermal power plants, Renew. Sust. Energ. Rev., 2022, 161, 112328
  • Basu P., Butler J., Leon M. A. Biomass co-firing options on the emission reduction and electricity generation costs in coal-fired power plants, Renew. Energy, 2011, 36, 282–288
  • Agbor E., Zhang X., Kumar A. A review of biomass co-firing in North America, Renew. Sust. Energ. Rev., 2014, 40, 930–943
  • Рябов Г. А. Обзор результатов зарубежных и отечественных исследований в области использования технологии сжигания твердых топлив в циркулирующем кипящем слое. Теплоэнергетика, 2021, 2, 41–60 [Ryabov G. A. Review of the results of foreign and domestic research in the field of using the technology of combustion of solid fuels in a circulating fluidized bed. Thermal power engineering, 2021, 2, 41–60 (in Rus.)]
  • Yu Q., Wang Y., Le Q. V., Yang H., Hosseinzadeh-Bandbafha H., Yang Y., Sonne C., Tabatabaei M., Lam S. S., Peng W. An Overview on the Conversion of Forest Biomass into Bioenergy, Front. Energy Res., 2021, 9, 684234
  • Рябов Г. А. Совместное сжигание биомассы и ископаемых топлив – путь к декарбонизации производства тепла и электроэнергии (Обзор). Теплоэнергетика, 2022, 6, 17–32 [Ryabov G. A. Co-firing of biomass and fossil fuels is a way to decarbonise heat and power generation (Review). Thermal power engineering, 2022, 6, 17–32 (in Rus.)]
  • Долгушин И.А., Рябов Г. А., Седлов А. С. Исследование и совершенствование схемы ТЭС с котлом ЦКС в целях повышения эффективности и улучшения экологических показателей. Энергетик, 2014, 8, 33–36 [Dolgushin I. A., Ryabov G. A., Sedlov A. S. Research and improvement of the TPP scheme with a CFB boiler in order to increase efficiency and improve environmental performance. Energetik, 2014, 8, 33–36 (in Rus.)]
  • Iglinski B., Buczkowski R., Cichosz M., Piechota G., Kujawski W., Plaskacz M. Renewable energy production in the Zachodniopomorskie Voivodeship (Poland)(Review), Renew. Sust. Energ. Rev., 2013, 27, 768–777
  • Piwowar A., Dzikuc M. Outline of the economic and technical problems associated with the co-combustion of biomass in Poland, Renew. Sust. Energ. Rev., 2016, 54, 415–420
  • Bhuiyan A.A., Blicblau A. S., Sadrul Islam A. K.M., Naser J. A review on thermo-chemical characteristics of coal/biomass co-firing in industrial furnace, J. Energy Inst., 2018, 91, 1–18
Еще
Статья обзорная