Способы уменьшения накопления радиоактивности в почках при таргетной терапии с использованием малых молекул, пептидов и фрагментов антител
Автор: Авров К.О., Шатик С.В., Самойлович М.П.
Журнал: Сибирский онкологический журнал @siboncoj
Рубрика: Обзоры
Статья в выпуске: 4 т.23, 2024 года.
Бесплатный доступ
Введение фармпрепаратов, содержащих радиоактивные изотопы и способных специфически связываться с определенными белками, является одним из подходов, применяемых при лечении или диагностике злокачественных опухолей. При этом важной задачей является решение проблемы накопления радиоактивности в почках после введения в организм радиоконъюгатов с молекулярной массой менее 70 КДа. Цель исследования - выявление наиболее эффективных подходов, способствующих уменьшению накопления радиоактивности в почках при использовании радиоконъюгатов в ходе диагностики и таргетной терапии опухолевых заболеваний. Материал и методы. Проведен поиск литературы по теме обзора в электронных базах данных PubMed, Scopus и Web of Science в период с 1987 по 2023 г., 82 статьи использовано при написании обзора.
Радиофармпрепараты, накопление радиоактивности в почках, таргетная терапия, опухоли
Короткий адрес: https://sciup.org/140307083
IDR: 140307083 | DOI: 10.21294/1814-4861-2024-23-4-162-171
Список литературы Способы уменьшения накопления радиоактивности в почках при таргетной терапии с использованием малых молекул, пептидов и фрагментов антител
- Cyprine Neba Funeh C.N., Asiabi P., D’Huyvetter M., Devoogdt N. Case Study #3: Antibody Fragments in Radiopharmaceutical Therapy. Radiopharmaceutical Therapy. PP. 253-273. https://doi.org/10.1007/978-3-031-39005-0_12.
- Kuna M., Mahdi F., Chade A.R., Bidwell G.L. 3rd. Molecular Size Modulates Pharmacokinetics, Biodistribution, and Renal Deposition of the Drug Delivery Biopolymer Elastin-like Polypeptide. Sci Rep. 2018; 8(1): 7923. https://doi.org/10.1038/s41598-018-24897-9.
- Wittrup K.D., Thurber G.M., Schmidt M.M., Rhoden J.J. Practical theoretic guidance for the design of tumor-targeting agents. Methods Enzymol. 2012; 503: 255-68. https://doi.org/10.1016/B978-0-12-396962-0.00010-0.
- Schmidt M.M., Wittrup K.D. A modeling analysis of the effects of molecular size and binding affinity on tumor targeting. Mol Cancer Ther. 2009; 8(10): 2861-71. https://doi.org/10.1158/1535-7163.MCT-09-0195.
- Vivier D., Sharma S.K., Adumeau P., Rodriguez C., Fung K., Zeglis B.M. The Impact of FcγRI Binding on Immuno-PET. J Nucl Med. 2019; 60(8): 1174-82. https://doi.org/10.2967/jnumed.118.223636.
- Vivier D., Fung K., Rodriguez C., Adumeau P., Ulaner G.A., Lewis J.S., Sharma S.K., Zeglis B.M. The Influence of Glycans-Specific Bioconjugation on the FcγRI Binding and In vivo Performance of 89Zr-DFO-Pertuzumab. Theranostics. 2020; 10(4): 1746-57. https://doi.org/10.7150/ thno.39089.
- Behr T.M., Goldenberg D.M., Becker W. Reducing the renal uptake of radiolabeled antibody fragments and peptides for diagnosis and therapy: present status, future prospects and limitations. Eur J Nucl Med. 1998; 25(2): 201-12. https://doi.org/10.1007/s002590050216.
- Vegt E., de Jong M., Wetzels J.F., Masereeuw R., Melis M., Oyen W.J., Gotthardt M., Boerman O.C. Renal toxicity of radiolabeled peptides and antibody fragments: mechanisms, impact on radionuclide therapy, and strategies for prevention. J Nucl Med. 2010; 51(7): 1049-58. https://doi.org/10.2967/jnumed.110.075101.
- Pimm M.V., Gribben S.J. Prevention of renal tubule re-absorption of radiometal (indium-111) labelled Fab fragment of a monoclonal antibody in mice by systemic administration of lysine. Eur J Nucl Med. 1994; 21(7): 663-5. https://doi.org/10.1007/BF00285590.
- Behr T.M., Becker W.S., Sharkey R.M., Juweid M.E., Dunn R.M., Bair H.J., Wolf F.G., Goldenberg D.M. Reduction of renal uptake of monoclonal antibody fragments by amino acid infusion. J Nucl Med. 1996; 37(5): 829-33.
- Chigoho D.M., Bridoux J., Hernot S. Reducing the renal retention of low- to moderate-molecular-weight radiopharmaceuticals. Curr Opin Chem Biol. 2021; 63: 219-28. https://doi.org/10.1016/j.cbpa.2021.06.008.
- Xiong C., Yin D., Li J., Huang Q., Ravoori M.K., Kundra V., Zhu H., Ang Z., Lu Y., Li C. Metformin Reduces Renal Uptake of Radiotracers and Protects Kidneys from Radiation-Induced Damage. Mol Pharm. 2019; 16(2): 808-15. https://doi.org/10.1021/acs.molpharmaceut.8b01091.
- Gainkam L.O., Caveliers V., Devoogdt N., Vanhove C., Xavier C., Boerman O., Muyldermans S., Bossuyt A., Lahoutte T. Localization, mechanism and reduction of renal retention of technetium-99m labeled epidermal growth factor receptor-specific nanobody in mice. Contrast Media Mol Imaging. 2011; 6(2): 85-92. https://doi.org/10.1002/cmmi.408.
- van Eerd J.E., Vegt E., Wetzels J.F., Russel F.G., Masereeuw R., Corstens F.H., Oyen W.J., Boerman O.C. Gelatin-based plasma expander effectively reduces renal uptake of 111In-octreotide in mice and rats. J Nucl Med. 2006; 47(3): 528-33.
- Briat A., Wenk C.H., Ahmadi M., Claron M., Boturyn D., Josserand V., Dumy P., Fagret D., Coll J.L., Ghezzi C., Sancey L., Vuillez J.P. Reduction of renal uptake of 111In-DOTA-labeled and A700-labeled RAFT-RGD during integrin αvβ3 targeting using single photon emission computed tomography and optical imaging. Cancer Sci. 2012; 103(6): 1105-10. https://doi.org/10.1111/j.1349-7006.2012.02286.x.
- Melis M., Bijster M., de Visser M., Konijnenberg M.W., de Swart J., Rolleman E.J., Boerman O.C., Krenning E.P., de Jong M. Dose-response effect of Gelofusine on renal uptake and retention of radiolabelled octreotate in rats with CA20948 tumours. Eur J Nucl Med Mol Imaging. 2009; 36(12): 1968-76. https://doi.org/10.1007/s00259-009-1196-8.
- Chatalic K.L., Heskamp S., Konijnenberg M., Molkenboer-Kuenen J.D., Franssen G.M., Clahsen-van Groningen M.C., Schottelius M., Wester H.J., van Weerden W.M., Boerman O.C., de Jong M. Towards Personalized Treatment of Prostate Cancer: PSMA I&T, a Promising ProstateSpecific Membrane Antigen-Targeted Theranostic Agent. Theranostics. 2016; 6(6): 849-61. https://doi.org/10.7150/thno.14744.
- Matteucci F., Mezzenga E., Caroli P., Di Iorio V., Sarnelli A., Celli M., Fantini L., Moretti A., Galassi R., De Giorgi U., Paganelli G. Reduction of 68Ga-PSMA renal uptake with mannitol infusion: preliminary results. Eur J Nucl Med Mol Imaging. 2017; 44(13): 2189-94. https://doi.org/10.1007/s00259-017-3791-4.
- Altai M., Garousi J., Rinne S.S., Schulga A., Deyev S., Vorobyeva A. On the prevention of kidney uptake of radiolabeled DARPins. EJNMMI Res. 2020; 10(1): 7. https://doi.org/10.1186/s13550-020-0599-1.
- Vorobyeva A., Oroujeni M., Lindbo S., Hober S., Xu T., Liu Y., Rinne S.S., Garousi J. Investigation of a Pharmacological Approach for Reduction of Renal Uptake of Radiolabeled ADAPT Scaffold Protein. Molecules. 2020; 25(19): 4448. https://doi.org/10.3390/molecules25194448.
- Kuo H.T., Pan J., Zhang Z., Lau J., Merkens H., Zhang C., Colpo N., Lin K.S., Bénard F. Effects of Linker Modification on Tumor-to-Kidney Contrast of 68Ga-Labeled PSMA-Targeted Imaging Probes. Mol Pharm. 2018; 15(8): 3502-11. https://doi.org/10.1021/acs.molpharmaceut.8b00499.
- Baranski A.C., Schäfer M., Bauder-Wüst U., Wacker A., Schmidt J., Liolios C., Mier W., Haberkorn U., Eisenhut M., Kopka K., Eder M. Improving the Imaging Contrast of 68Ga-PSMA-11 by Targeted Linker Design: Charged Spacer Moieties Enhance the Pharmacokinetic Properties. Bioconjug Chem. 2017; 28(9): 2485-92. https://doi.org/10.1021/acs.bioconjchem.7b00458.
- Flook A.M., Yang J., Miao Y. Substitution of the Lys linker with the β-Ala linker dramatically decreased the renal uptake of 99mTc-labeled Arg-X-Asp-conjugated and X-Ala-Asp-conjugated α-melanocyte stimulating hormone peptides. J Med Chem. 2014; 57(21): 9010-8. https://doi.org/10.1021/ jm501114v.
- Hofström C., Altai M., Honarvar H., Strand J., Malmberg J., Hosseinimehr S.J., Orlova A., Gräslund T., Tolmachev V. HAHAHA, HEHEHE, HIHIHI, or HKHKHK: influence of position and composition of histidine containing tags on biodistribution of [(99m)Tc(CO)3] (+)-labeled affibody molecules. J Med Chem. 2013; 56(12): 4966-74. https://doi.org/10.1021/jm400218y.
- Strand J., Nordeman P., Honarvar H., Altai M., Orlova A., Larhed M., Tolmachev V. Site-Specific Radioiodination of HER2-Targeting Affibody Molecules using 4-Iodophenethylmaleimide Decreases Renal Uptake of Radioactivity. ChemistryOpen. 2015; 4(2): 174-82. https://doi.org/10.1002/open.201402097.
- Ekblad T., Tran T., Orlova A., Widström C., Feldwisch J., Abrahmsén L., Wennborg A., Karlström A.E., Tolmachev V. Development and preclinical characterisation of 99mTc-labelled Affibody molecules with reduced renal uptake. Eur J Nucl Med Mol Imaging. 2008; 35(12): 2245-55. https://doi.org/10.1007/s00259-008-0845-7.
- Guo H., Yang J., Gallazzi F., Prossnitz E.R., Sklar L.A., Miao Y. Effect of DOTA position on melanoma targeting and pharmacokinetic properties of 111In-labeled lactam bridge-cyclized alpha-melanocyte stimulating hormone peptide. Bioconjug Chem. 2009; 20(11): 2162-8. https://doi.org/10.1021/bc9003475.
- Mitran B., Thisgaard H., Rinne S., Dam J.H., Azami F., Tolmachev V., Orlova A., Rosenström U. Selection of an optimal macrocyclic chelator improves the imaging of prostate cancer using cobalt-labeled GRPR antagonist RM26. Sci Rep. 2019; 9(1). https://doi.org/10.1038/s41598-019-52914-y.
- Chatalic K.L., Veldhoven-Zweistra J., Bolkestein M., Hoeben S., Koning G.A., Boerman O.C., de Jong M., van Weerden W.M. A Novel ¹¹¹InLabeled Anti-Prostate-Specific Membrane Antigen Nanobody for Targeted SPECT/CT Imaging of Prostate Cancer. J Nucl Med. 2015; 56(7): 1094-9. https://doi.org/10.2967/jnumed.115.156729.
- D’Huyvetter M., Vincke C., Xavier C., Aerts A., Impens N., Baatout S., De Raeve H., Muyldermans S., Caveliers V., Devoogdt N., Lahoutte T. Targeted radionuclide therapy with A 177Lu-labeled anti-HER2 nanobody. Theranostics. 2014; 4(7): 708-20. https://doi.org/10.7150/thno.8156.
- Duncan J.R., Behr T.M., DeNardo S.J. Intracellular fate of radiometals. J Nucl Med. 1997; 38(5): 829.
- Dietlein M., Kobe C., Kuhnert G., Stockter S., Fischer T., Schomäcker K., Schmidt M., Dietlein F., Zlatopolskiy B.D., Krapf P., Richarz R., Neubauer S., Drzezga A., Neumaier B. Comparison of [(18) F]DCFPyL and [ (68)Ga]Ga-PSMA-HBED-CC for PSMA-PET Imaging in Patients with Relapsed Prostate Cancer. Mol Imaging Biol. 2015; 17(4): 575-84. https://doi.org/10.1007/s11307-015-0866-0.
- Bala G., Crauwels M., Blykers A., Remory I., Marschall A.L.J., Dübel S., Dumas L., Broisat A., Martin C., Ballet S., Cosyns B., Caveliers V., Devoogdt N., Xavier C., Hernot S. Radiometal-labeled anti-VCAM-1 nano-bodies as molecular tracers for atherosclerosis - impact of radiochemistry on pharmacokinetics. Biol Chem. 2019; 400(3): 323-32. https://doi.org/10.1515/hsz-2018-0330.
- Maschauer S., Einsiedel J., Hübner H., Gmeiner P., Prante O. (18) F- and (68)Ga-Labeled Neurotensin Peptides for PET Imaging of Neurotensin Receptor 1. J Med Chem. 2016; 59(13): 6480-92. https://doi.org/10.1021/acs.jmedchem.6b00675.
- Potemkin R., Strauch B., Kuwert T., Prante O., Maschauer S. Development of 18F-Fluoroglycosylated PSMA-Ligands with Improved Renal Clearance Behavior. Mol Pharm. 2020; 17(3): 933-43. https://doi.org/10.1021/acs.molpharmaceut.9b01179.
- Akizawa H., Imajima M., Hanaoka H., Uehara T., Satake S., Arano Y. Renal brush border enzyme-cleavable linkages for low renal radioactivity levels of radiolabeled antibody fragments. Bioconjug Chem. 2013; 24(2): 291-9. https://doi.org/10.1021/bc300428b.
- Zhou Z., Devoogdt N., Zalutsky M.R., Vaidyanathan G. An Efficient Method for Labeling Single Domain Antibody Fragments with 18F Using Tetrazine- Trans-Cyclooctene Ligation and a Renal Brush Border Enzyme-Cleavable Linker. Bioconjug Chem. 2018; 29(12): 4090-103. https://doi.org/10.1021/acs.bioconjchem.8b00699.
- Vaidyanathan G., Kang C.M., McDougald D., Minn I., Brummet M., Pomper M.G., Zalutsky M.R. Brush border enzyme-cleavable linkers: Evaluation for reducing renal uptake of radiolabeled prostate-specific membrane antigen inhibitors. Nucl Med Biol. 2018; 62-63: 18-30. https://doi.org/10.1016/j.nucmedbio.2018.05.002.
- Suzuki C., Uehara T., Kanazawa N., Wada S., Suzuki H., Arano Y. Preferential Cleavage of a Tripeptide Linkage by Enzymes on Renal Brush Border Membrane To Reduce Renal Radioactivity Levels of Radiolabeled Antibody Fragments. J Med Chem. 2018; 61(12): 5257-68. https://doi.org/10.1021/acs.jmedchem.8b00198.
- Uehara T., Yokoyama M., Suzuki H., Hanaoka H., Arano Y. A Gallium-67/68-Labeled Antibody Fragment for Immuno-SPECT/PET Shows Low Renal Radioactivity Without Loss of Tumor Uptake. Clin Cancer Res. 2018; 24(14): 3309-16. https://doi.org/10.1158/1078-0432.CCR-18-0123.
- Zhang M., Jacobson O., Kiesewetter D.O., Ma Y., Wang Z., Lang L., Tang L., Kang F., Deng H., Yang W., Niu G., Wang J., Chen X. Improving the Theranostic Potential of Exendin 4 by Reducing the Renal Radioactivity through Brush Border Membrane Enzyme-Mediated Degradation. Bioconjug Chem. 201; 30(6): 1745-53. https://doi.org/10.1021/acs.bioconjchem.9b00280.
- Bendre S., Zhang Z., Kuo H.T., Rousseau J., Zhang C., Merkens H., Roxin Á., Bénard F., Lin K.S. Evaluation of Met-Val-Lys as a Renal Brush Border Enzyme-Cleavable Linker to Reduce Kidney Uptake of 68GaLabeled DOTA-Conjugated Peptides and Peptidomimetics. Molecules. 2020; 25(17): 3854. https://doi.org/10.3390/molecules25173854.
- Suzuki H., Kise S., Kaizuka Y., Watanabe R., Sugawa T., Furukawa T., Fujii H., Uehara T. Copper-64-Labeled Antibody Fragments for Immuno-PET/Radioimmunotherapy with Low Renal Radioactivity Levels and Amplified Tumor-Kidney Ratios. ACS Omega. 2021; 6(33): 21556-62. https://doi.org/10.1021/acsomega.1c02516.
- Zhang M., Ye J., Xie Z., Yan Y., Wang J., Chen X. Optimization of Enzymolysis Clearance Strategy To Enhance Renal Clearance of Radioligands. Bioconjug Chem. 2021; 32(9): 2108-16. https://doi.org/10.1021/acs.bioconjchem.1c00392.
- Yim C.B., Mikkola K., Fagerholm V., Elomaa V.V., Ishizu T., Rajander J., Schlesinger J., Roivainen A., Nuutila P., Solin O. Synthesis and preclinical characterization of [64Cu]NODAGA-MAL-exendin-4 with a Nε-maleoyl-L-lysyl-glycine linkage. Nucl Med Biol. 2013; 40(8): 1006-12. https://doi.org/10.1016/j.nucmedbio.2013.06.012.
- Nilvebrant J., Hober S. The albumin-binding domain as a scaffold for protein engineering. Comput Struct Biotechnol J. 2013. https://doi.org/10.5936/csbj.201303009.
- Dennis M.S., Jin H., Dugger D., Yang R., McFarland L., Ogasawara A., Williams S., Cole M.J., Ross S., Schwall R. Imaging tumors with an albumin-binding Fab, a novel tumor-targeting agent. Cancer Res. 2007; 67(1): 254-61. https://doi.org/10.1158/0008-5472.CAN-06-2531.
- Krasniqi A., Bialkowska M., Xavier C., van der Jeught K., Muyldermans S., Devoogdt N., D’Huyvetter M. Pharmacokinetics of radiolabeled dimeric sdAbs constructs targeting human CD20. N Biotechnol. 2018; 45: 69-79. https://doi.org/10.1016/j.nbt.2018.03.004.
- Tolmachev V., Orlova A., Pehrson R., Galli J., Baastrup B., Andersson K., Sandström M., Rosik D., Carlsson J., Lundqvist H., Wennborg A., Nilsson F.Y. Radionuclide therapy of HER2-positive microxenografts using a 177Lu-labeled HER2-specific Affibody molecule. Cancer Res. 2007; 67(6): 2773-82. https://doi.org/10.1158/0008-5472.CAN-06-1630.
- Orlova A., Jonsson A., Rosik D., Lundqvist H., Lindborg M., Abrahmsen L., Ekblad C., Frejd F.Y., Tolmachev V. Site-specific radiometal labeling and improved biodistribution using ABY-027, a novel HER2- targeting affibody molecule-albumin-binding domain fusion protein. J Nucl Med. 2013; 54(6): 961-8. https://doi.org/10.2967/jnumed.112.110700.
- Jonsson A., Dogan J., Herne N., Abrahmsén L., Nygren P.A. Engineering of a femtomolar affinity binding protein to human serum albumin. Protein Eng Des Sel. 2008; 21(8): 515-27. https://doi.org/10.1093/protein/gzn028.
- Liu H., Lindbo S., Ding H., Altai M., Garousi J., Orlova A., Tolmachev V., Hober S., Gräslund T. Potent and specific fusion toxins consisting of a HER2-binding, ABD-derived affinity protein, fused to truncated versions of Pseudomonas exotoxin A. Int J Oncol. 2019; 55(1): 309-19. https://doi.org/10.3892/ijo.2019.4814.
- Kaeppeli S.A.M., Jodal A., Gotthardt M., Schibli R., Béhé M. Exendin-4 Derivatives with an Albumin-Binding Moiety Show Decreased Renal Retention and Improved GLP-1 Receptor Targeting. Mol Pharm. 2019; 16(9): 3760-9. https://doi.org/10.1021/acs.molpharmaceut.9b00271.
- Davis R.A., Hausner S.H., Harris R., Sutcliffe J.L. A Comparison of Evans Blue and 4-(p-Iodophenyl)butyryl Albumin Binding Moieties on an Integrin αvβ6 Binding Peptide. Pharmaceutics. 2022; 14(4): 745. https://doi.org/10.3390/pharmaceutics14040745.
- Benešová M., Umbricht C.A., Schibli R., Müller C. Albumin-Binding PSMA Ligands: Optimization of the Tissue Distribution Profile. Mol Pharm. 2018; 15(3): 934-46. https://doi.org/10.1021/acs.molpharmaceut.7b00877.
- Zang J., Fan X., Wang H., Liu Q., Wang J., Li H., Li F., Jacobson O., Niu G., Zhu Z., Chen X. First-in-human study of 177Lu-EB-PSMA-617 in patients with metastatic castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging. 2019; 46(1): 148-58. https://doi.org/10.1007/s00259-018-4096-y.
- Wang Z., Tian R., Niu G., Ma Y., Lang L., Szajek L.P., Kiesewetter D.O., Jacobson O., Chen X. Single Low-Dose Injection of Evans Blue Modified PSMA-617 Radioligand Therapy Eliminates Prostate-Specific Membrane Antigen Positive Tumors. Bioconjug Chem. 2018; 29(9): 3213-21. https://doi.org/10.1021/acs.bioconjchem.8b00556.
- Deberle L.M., Benešová M., Umbricht C.A., Borgna F., Büchler M., Zhernosekov K., Schibli R., Müller C. Development of a new class of PSMA radioligands comprising ibuprofen as an albumin-binding entity. Theranostics. 2020; 10(4): 1678-93. https://doi.org/10.7150/thno.40482.
- Chapman A.P. PEGylated antibodies and antibody fragments for improved therapy: a review. Adv Drug Deliv Rev. 2002; 54(4): 531-45. https://doi.org/10.1016/s0169-409x(02)00026-1.
- Koussoroplis S.J., Paulissen G., Tyteca D., Goldansaz H., Todoroff J., Barilly C., Uyttenhove C., Van Snick J., Cataldo D., Vanbever R. PEGylation of antibody fragments greatly increases their local residence time following delivery to the respiratory tract. J Control Release. 2014; 187: 91-100. https://doi.org/10.1016/j.jconrel.2014.05.021.
- Rashidian M., Ingram J.R., Dougan M., Dongre A., Whang K.A., LeGall C., Cragnolini J.J., Bierie B., Gostissa M., Gorman J., Grotenbreg G.M., Bhan A., Weinberg R.A., Ploegh H.L. Predicting the response to CTLA-4 blockade by longitudinal noninvasive monitoring of CD8 T cells. J Exp Med. 2017; 214(8): 2243-55. https://doi.org/10.1084/jem.20161950.
- Kang J.S., Deluca P.P., Lee K.C. Emerging PEGylated drugs. Expert Opin Emerg Drugs. 2009; 14(2): 363-80. https://doi.org/10.1517/14728210902907847.
- Li L., Crow D., Turatti F., Bading J.R., Anderson A.L., Poku E., Yazaki P.J., Carmichael J., Leong D., Wheatcroft D., Raubitschek A.A., Hudson P.J., Colcher D., Shively J.E. Site-specific conjugation of monodispersed DOTA-PEGn to a thiolated diabody reveals the effect of increasing peg size on kidney clearance and tumor uptake with improved 64-copper PET imaging. Bioconjug Chem. 2011; 22(4): 709-16. https://doi.org/10.1021/bc100464e. Erratum in: Bioconjug Chem. 2011; 22(6): 1256. Wheatcroft, Michael P [corrected to Wheatcroft, David].
- Li L., Turatti F., Crow D., Bading J.R., Anderson A.L., Poku E., Yazaki P.J., Williams L.E., Tamvakis D., Sanders P., Leong D., Raubitschek A., Hudson P.J., Colcher D., Shively J.E. Monodispersed DOTA-PEG-conjugated anti-TAG-72 diabody has low kidney uptake and high tumor-to-blood ratios resulting in improved 64Cu PET. J Nucl Med. 2010; 51(7): 1139-46. https://doi.org/10.2967/jnumed.109.074153.
- Stickney D.R., Anderson L.D., Slater J.B., Ahlem C.N., Kirk G.A., Schweighardt S.A., Frincke J.M. Bifunctional antibody: a binary radiopharmaceutical delivery system for imaging colorectal carcinoma. Cancer Res. 1991; 51(24): 6650-5.
- Barbet J., Peltier P., Bardet S., Vuillez J.P., Bachelot I., Denet S., Olivier P., Leccia F., Corcuff B., Huglo D., Proye C., Rouvier E., Meyer P., Chatal J.F. Radioimmunodetection of medullary thyroid carcinoma using indium-111 bivalent hapten and anti-CEA x anti-DTPA-indium bispecific antibody. J Nucl Med. 1998; 39(7): 1172-8.
- Sharkey R.M., Karacay H., Litwin S., Rossi E.A., McBride W.J., Chang C.H., Goldenberg D.M. Improved therapeutic results by pretargeted radioimmunotherapy of non-Hodgkin’s lymphoma with a new recombinant, trivalent, anti-CD20, bispecific antibody. Cancer Res. 2008; 68(13): 5282-90. https://doi.org/10.1158/0008-5472.CAN-08-0037.
- Hnatowich D.J., Virzi F., Rusckowski M. Investigations of avidin and biotin for imaging applications. J Nucl Med. 1987; 28(8): 1294-302.
- Weiden P.L., Breitz H.B., Press O., Appelbaum J.W., Bryan J.K., Gaffigan S., Stone D., Axworthy D., Fisher D., Reno J. Pretargeted radioimmunotherapy (PRIT) for treatment of non-Hodgkin’s lymphoma (NHL): initial phase I/II study results. Cancer Biother Radiopharm. 2000; 15(1): 15-29. https://doi.org/10.1089/cbr.2000.15.15.
- Breitz H.B., Fisher D.R., Goris M.L., Knox S., Ratliff B., Murtha A.D., Weiden P.L. Radiation absorbed dose estimation for 90Y-DOTA-biotin with pretargeted NR-LU-10/streptavidin. Cancer Biother Radiopharm. 1999; 14(5): 381-95. https://doi.org/10.1089/cbr.1999.14.381.
- Green D.J., Frayo S.L., Lin Y., Hamlin D.K., Fisher D.R., Frost S.H., Kenoyer A.L., Hylarides M.D., Gopal A.K., Gooley T.A., Orozco J.J., Till B.G., O’Steen S., Orcutt K.D., Wilbur D.S., Wittrup K.D., Press O.W. Comparative Analysis of Bispecific Antibody and Streptavidin-Targeted Radioimmunotherapy for B-cell Cancers. Cancer Res. 2016; 76(22): 6669-79. https://doi.org/10.1158/0008-5472.CAN-16-0571.
- Westerlund K., Altai M., Mitran B., Konijnenberg M., Oroujeni M., Atterby C., de Jong M., Orlova A., Mattsson J., Micke P., Karlström A.E., Tolmachev V. Radionuclide Therapy of HER2-Expressing Human Xenografts Using Affibody-Based Peptide Nucleic Acid-Mediated Pretargeting: In Vivo Proof of Principle. J Nucl Med. 2018; 59(7): 1092-8. https://doi.org/10.2967/jnumed.118.208348.
- Altai M., Perols A., Tsourma M., Mitran B., Honarvar H., Robillard M., Rossin R., ten Hoeve W., Lubberink M., Orlova A., Karlström A.E., Tolmachev V. Feasibility of Affibody-Based Bioorthogonal Chemistry-Mediated Radionuclide Pretargeting. J Nucl Med. 2016; 57(3): 431-6. https://doi.org/10.2967/jnumed.115.162248.
- Leonidova A., Foerster C., Zarschler K., Schubert M., Pietzsch H.J., Steinbach J., Bergmann R., Metzler-Nolte N., Stephan H., Gasser G. In vivo demonstration of an active tumor pretargeting approach with peptide nucleic acid bioconjugates as complementary system. Chem Sci. 2015; 6(10): 5601-16. https://doi.org/10.1039/c5sc00951k.
- Westerlund K., Honarvar H., Tolmachev V., Eriksson Karlström A. Design, Preparation, and Characterization of PNA-Based Hybridization Probes for Affibody-Molecule-Mediated Pretargeting. Bioconjug Chem. 2015; 26(8): 1724-36. https://doi.org/10.1021/acs.bioconjchem.5b00292.
- Poty S., Carter L.M., Mandleywala K., Membreno R., Abdel-Atti D., Ragupathi A., Scholz W.W., Zeglis B.M., Lewis J.S. Leveraging Bioorthogonal Click Chemistry to Improve 225Ac-Radioimmunotherapy of Pancreatic Ductal Adenocarcinoma. Clin Cancer Res. 2019; 25(2): 868-80. https://doi.org/10.1158/1078-0432.CCR-18-1650.
- Timperanza C., Jensen H., Bäck T., Lindegren S., Aneheim E. Pretargeted Alpha Therapy of Disseminated Cancer Combining Click Chemistry and Astatine-211. Pharmaceuticals (Basel). 2023; 16(4): 595. https://doi.org/10.3390/ph16040595.
- Tano H., Oroujeni M., Vorobyeva A., Westerlund K., Liu Y., Xu T., Vasconcelos D., Orlova A., Karlström A.E., Tolmachev V. Comparative Evaluation of Novel 177Lu-Labeled PNA Probes for Affibody-Mediated PNA-Based Pretargeting. Cancers (Basel). 2021; 13(3): 500. https://doi.org/10.3390/cancers13030500.
- Su F.M., Beaumier P., Axworthy D., Atcher R., Fritzberg A. Pretargeted radioimmunotherapy in tumored mice using an in vivo 212Pb/212Bi generator. Nucl Med Biol. 2005; 32(7): 741-7. https://doi.org/10.1016/j.nucmedbio.2005.06.009.
- Heskamp S., Hernandez R., Molkenboer-Kuenen J.D.M., Essler M., Bruchertseifer F., Morgenstern A., Steenbergen E.J., Cai W., Seidl C., McBride W.J., Goldenberg D.M., Boerman O.C. α-Versus β-Emitting Radionuclides for Pretargeted Radioimmunotherapy of Carcinoembryonic Antigen-Expressing Human Colon Cancer Xenografts. J Nucl Med. 2017; 58(6): 926-33. https://doi.org/10.2967/jnumed.116.187021.
- Altai M., Membreno R., Cook B., Tolmachev V., Zeglis B.M. Pretargeted Imaging and Therapy. J Nucl Med. 2017; 58(10): 1553-9. https://doi.org/10.2967/jnumed.117.189944.
- Cheal S.M., Chung S.K., Vaughn B.A., Cheung N.V., Larson S.M. Pretargeting: A Path Forward for Radioimmunotherapy. J Nucl Med. 2022; 63(9): 1302-15. https://doi.org/10.2967/jnumed.121.262186.