Сравнение способов инициализации начальных точек на генетическом алгоритме оптимизации
Автор: Павленко А.А.
Журнал: Сибирский аэрокосмический журнал @vestnik-sibsau
Рубрика: Авиационная и ракетно-космическая техника
Статья в выпуске: 4 т.20, 2019 года.
Бесплатный доступ
Способ инициализации начальных точек для алгоритмов оптимизации является одним из главных параметров. Сегодня используются способы инициализации начальных точек, основанные на стохастических алгоритмах разброса точек. В генетическом алгоритме точки представляют собой булевые строки. Эти строки формируются по-разному: напрямую с помощью случайных последовательностей (с равномерным законом распределения) или с помощью случайных последовательностей (с равномерным законом распределения) в пространстве вещественных чисел, а потом преобразуют вещественные числа в булевые. Спроектированы шесть алгоритмов построения многомерных точек для алгоритмов глобальной оптимизации - булевых строк, основанные как на стохастических, так и на неслучайных алгоритмах разброса точек. В первых четырех способах инициализации булевых строк использовался случайный закон распределения, а в четвертом и пятом способе инициализации использовался неслучайный способ формирования начальных точек - ЛПt последовательность. Применялось большое количество повторных запусков алгоритмов оптимизации. Использовалась достаточно высокая точность вычислений. Исследования проводились на генетическом алгоритме глобальной оптимизации. Использовались функция Акли, функция Растригина, функция Шекеля, функция Гриванка и функция Розенброка. Исследования проводились с использованием трех алгоритмов разброса начальных точек: ЛПt последовательность, UDC последовательность, равномерный случайный разброс. В работе использовались лучшие параметры генетического алгоритма глобальной оптимизации. На выходе получены массивы математических ожиданий и среднеквадратических отклонений качества решения для разных функции и оптимизационных алгоритмов. Цель анализа способов инициализации начальных точек для генетического оптимизационного алгоритма заключалась в нахождении экстремума одновременно быстро, точно, дешево и надёжно. Способы инициализации сравнивались между собой по математическому ожиданию и среднеквадратическому отклонению. Под качеством решения понимается среднестатистическая ошибка нахождения экстремума. Выявлен лучший способ инициализации начальных точек для генетического алгоритма оптимизации на данных тестовых функциях. (Русскоязычная версия представлена по адресу https://vestnik.sibsau.ru/arhiv/)
Генетический алгоритм оптимизации, способы инициализации точек
Короткий адрес: https://sciup.org/148321936
IDR: 148321936 | DOI: 10.31772/2587-6066-2019-20-4-436-442
Список литературы Сравнение способов инициализации начальных точек на генетическом алгоритме оптимизации
- Zaloga A. N., Yakimov I. S., Dubinin P. S. Multipopulation Genetic Algorithm for Determining Crystal Structures Using Powder Diffraction Data // Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 2018. Vol. 12, No. 1. P. 128-134.
- Stanovov V., Akhmedova S., Semenkin E. Automatic Design of Fuzzy Controller for Rotary Inverted Pendulum with Success-History Adaptive Genetic Algorithm // 2019 International Conference on Information Technologies (InfoTech). IEEE, 2019. P. 1-4.
- Genetic Algorithm for Automated X-Ray Diffraction Full-Profile Analysis of Electrolyte Composition on Aluminium Smelters / A. Zaloga et al. // Informatics in Control, Automation and Robotics 12th International Conference, ICINCO 2015 Colmar, France, July 21-23, 2015 Revised Selected Papers. Springer, Cham, 2016. P. 79-93.
- Genetic algorithm optimized non-destructive prediction on property of mechanically injured peaches during postharvest storage by portable visible/shortwave near-infrared spectroscopy / X. Du et al. // Scientia Horticulturae. 2019. Vol. 249. P. 240-249.
- Akhmedova S., Stanovov V., Semenkin E. Soft Island Model for Population-Based Optimization Algorithms // International Conference on Swarm Intelligence. Springer, Cham, 2018. P. 68-77.