Сравнительный анализ аллельного состояния локуса VVMYBA1 у некоторых аборигенных и интродуцированных сортов винограда
Автор: Милованов А.В., Ильницкая Е.Т., Радченко В.В., Гарковенко А.В., Звягин А.С., Трошин Л.П., Кощаев А.Г.
Журнал: Сельскохозяйственная биология @agrobiology
Рубрика: Молекулярные технологии
Статья в выпуске: 3 т.55, 2020 года.
Бесплатный доступ
Европейский культурный виноград Vitis vinifira L. - одна из наиболее распространенных сельскохозяйственных культур. Выбор метода культивации винограда и переработки урожая виноградной лозы зависит от того, какой гибрид, клон и подвой используются в производстве, то есть от его ампелографических свойств. За содержание антоцианов в ягодах культурного и дикого винограда ответственно семейство виноградных транскрипционных факторов VvMybA . В настоящей работе у аборигенных российских сортов винограда впервые идентифицированы аллели гена VvMybA1 . При этом размер аллелей у окрашенных и неокрашенных сортов был одинаков. Выравнивание последовательностей показало характерные особенности строения аллелей для каждого из изученных генотипов. Нашей целью было выявление, установление особенностей строения и сравнение аллелей гена VvMybA1 у двух аборигенных и двух интродуцированных в России сортов винограда. В качестве материала были выбраны два окрашенных (Каберне Кортис и Сыпун черный) и два неокрашенных (Шардоне и Сибирьковый) сорта винограда аборигенного и интродуцированного происхождения. Материал верхушечных листьев растений отбирали в Анапской зональной ампелографической коллекции СКФНЦСВВ (АЗОСВиВ). ДНК выделяли согласно модифицированной CTAB-методике с добавлением меркаптоэтанола. Для проведения ПЦР и выделения искомых аллелей гена VvMybA1 использовали маркеры, которые позволяют идентифицировать сразу два аллеля - VvMybA1b и VvMybA1c . Анализ на соответствие ожидаемому результату проводили посредством поиска последовательности в базе данных GenBank NCBI, используя веб-сервисы BLAST, blastx и CD-search. По результатам выравнивания сиквенсов в программе ClustalO была выявлена однонуклеотидная вставка у белоягодных сортов и замены нуклеотидов в разных позициях у сортов с окрашенной и неокрашенной ягодой. При сравнении с базой данных GenBank NCBI было установлено, что нуклеотидные последовательности аллелей гена VvMybA1 у окрашенных сортов характерны для сортов с ярко выраженной окраской ягод, в то время как у неокрашенных потеря окраски, по-видимому, имела конкретную причину. Так, у сорта Шардоне выявлен аллель, для которого характерна вставка транспозона Gret-1 , блокирующего нормальную экспрессию гена VvMybA1 . У сорта Сибирьковый аллель гена VvMybA1 не функционален из-за блокировки транспозоном Gret-1 . Как показано в ряде исследований, этот аллель присутствует и у других неокрашенных сортов. При изучении аминокислотной последовательности, транслируемой с нуклеотидной последовательности анализируемых аллелей, также обнаружены различия между группами окрашенных и неокрашенных сортов. В целом эти различия можно разделить на типичные для окрашенных и неокрашенных сортов, однако при этом у сорта Сыпун черный была выявлена мутация, которая вызвала замену изолейцина на валин, но не повлияла на общую окраску ягод. При поиске в базе данных GenBank NCBI оказалось, что эта мутация не уникальна, так как ее обнаружили у сорта Альфонс Лавалле, а также у межвидовых гибридов.
Аборигенные сорта, интродуценты, аллель, ген vvmyba1, секвенирование, антоцианин, мутации, аминокислоты, транспозоны
Короткий адрес: https://sciup.org/142226314
IDR: 142226314 | DOI: 10.15389/agrobiology.2020.3.523rus
Список литературы Сравнительный анализ аллельного состояния локуса VVMYBA1 у некоторых аборигенных и интродуцированных сортов винограда
- Boss P.K., Davies C., Robinson S.P. Expression of anthocyanin biosynthesis pathway genes in red and white grapes. Plant Molecular Biology, 1996, 32(3): 565-569 ( ). DOI: 10.1007/BF00019111
- Swanepoel J.J., Southey J.M. The influence of rootstock on the rooting pattern of the grapevine. South African Journal of Enology and Viticulture, 1989, 10(1): 23-28 ( ). DOI: 10.21548/10-1-2295
- Forneck A. Plant breeding: clonality - a concept for stability and variability during vegetative propagation. In: Progress in botany, vol. 66 /K. Esser, U. Lüttge, W. Beyschlag, J. Murata (eds.). Springer, Berlin, Heidelberg, 2005: 164-183 ( ). DOI: 10.1007/3-540-27043-4_8
- Pelsy F., Hocquigny S., Moncada X., Barbeau G., Forget D., Hinrichsen P., Merdinoglu D. An extensive study of the genetic diversity within seven French wine grape variety collections. Theoretical and Applied Genetics, 2010, 120(6): 1219-1231 ( ). DOI: 10.1007/s00122-009-1250-8
- Rühl E., Konrad H., Lindner B., Bleser E. Quality criteria and targets for clonal selection in grapevine. Acta Horticulturae, 2004, 652: 29-33 ( ). DOI: 10.17660/ActaHortic.2004.652.1
- Torres N., Goicoechea N., Morales F., Antolín M.C. Berry quality and antioxidant properties in Vitis vinifera cv. Tempranillo as affected by clonal variability, mycorrhizal inoculation and temperature. Crop and Pasture Science, 2016, 67(9): 961-977 ( ).
- DOI: 10.1071/CP16038
- Van Leeuwen C., Roby J.P., Alonso-Villaverde V., Gindro K. Impact of clonal variability in Vitis vinifera Cabernet franc on grape composition, wine quality, leaf blade stilbene content, and downy mildew resistance. Journal of Agricultural and Food Chemistry, 2013, 61(1): 19-24 ( ).
- DOI: 10.1021/jf304687c
- Anesi A., Stocchero M., Dal Santo S., Commisso M., Zenoni S., Ceoldo S., Tornielli G.B., Siebert T.E., Herderich M., Pezzotti M., Guzzo F. Towards a scientific interpretation of the terroir concept: plasticity of the grape berry metabolome. BMC Plant Biology, 2015, 15(1): 191 ( ).
- DOI: 10.1186/s12870-015-0584-4
- Dal Santo S., Zenoni S., Sandri M., De Lorenzis G., Magris G., De Paoli E., Di Gaspero G., Del Fabbro C., Morgante M., Brancadoro L., Grossi D., Fasoli M., Zuccolotto P., Tornielli G.B., Pezzotti M. Grapevine field experiments reveal the contribution of genotype, the influence of environment and the effect of their interaction (G'E) on the berry transcriptome. The Plant Journal, 2018, 93(6): 1143-1159 ( ).
- DOI: 10.1111/tpj.13834
- Guidoni S., Ferrandino A., Novello V. Effects of seasonal and agronomical practices on skin anthocyanin profile of Nebbiolo grapes. American Journal of Enology and Viticulture, 2008, 59(1): 22-29.
- Azuma A., Kobayashi S., Mitani N., Shiraishi M., Yamada M., Ueno T., Kono A., Yakushiji H., Koshita Y. Genomic and genetic analysis of Myb-related genes that regulate anthocyanin biosynthesis in grape berry skin. Theoretical and Applied Genetics, 2008, 117(6): 1009-1019 ( ).
- DOI: 10.1007/s00122-008-0840-1
- Azuma A., Udo Y., Sato A., Mitani N., Kono A., Ban Y., Yakushiji H., Koshita Y., Kobayashi S. Haplotype composition at the color locus is a major genetic determinant of skin color variation in Vitis½labruscana grapes. Theoretical and Applied Genetics, 2011, 122(7): 1427-1438 ( ).
- DOI: 10.1007/s00122-011-1542-7
- Kobayashi S., Ishimaru M., Hiraoka K., Honda C. Myb-related genes of the Kyoho grape (Vitis labruscana) regulate anthocyanin biosynthesis. Planta, 2002, 215(6): 924-933 ( ).
- DOI: 10.1007/s00425-002-0830-5
- Kobayashi S., Goto-Yamamoto N., Hirochika H. Retrotransposon-induced mutations in grape skin color. Science, 2004, 304(5673): 982 ( ).
- DOI: 10.1126/science.1095011
- Walker A.R., Lee E., Bogs J., McDavid D.A., Thomas M.R., Robinson S.P. White grapes arose through the mutation of two similar and adjacent regulatory genes. The Plant Journal, 2007, 49(5): 772-785 ( ).
- DOI: 10.1111/j.1365-313X.2006.02997.x
- Lijavetzky D., Ruiz-García L., Cabezas J.A., De Andrés M.T., Bravo G., Ibáñez A., Carreño J., Cabello F., Ibáñez J., Martínez-Zapater J.M. Molecular genetics of berry colour variation in table grape. Molecular Genetics and Genomics, 2006, 276(5): 427-435 ( ).
- DOI: 10.1007/s00438-006-0149-1
- Giannetto S., Velasco R., Troggio M., Malacarne G., Storchi P., Cancellier S., De Nardi B., Crespan M. A PCR-based diagnostic tool for distinguishing grape skin color mutants. Plant Science, 2008, 175(3): 402-409 ( ).
- DOI: 10.1016/j.plantsci.2008.05.010
- De Lorenzis G. Investigation of VvMybA1 and VvMybA2 berry color genes in 'Aglianico' biotypes. In: Progress in Vitis vinfera diversity evaluation and use, vol. 54 /G. De Lorenzis, D. Carrasco, R. Arroyo Garcia, M. Rossoni, G.S. Di Lorenzo, O. Failla (eds.). Bundesanstalt fur Zuchtungsforschung an Kulturpflanzen, Geilweilerhof, 2015: 43-44.
- Fournier-Level A., Le Cunff L., Gomez C., Doligez A., Ageorges A., Roux C., Bertrand Y., Souquet J., Cheynier V., This P. Quantitative genetic bases of anthocyanin variation in grape (Vitis vinifera L. ssp. sativa) berry: a quantitative trait locus to quantitative trait nucleotide integrated study. Genetics, 2009, 183(3): 1127-1139 ( ).
- DOI: 10.1534/genetics.109.103929
- This P., Lacombe T., Cadle-Davidson M., Owens C.L. Wine grape (Vitis vinifera L.) color associates with allelic variation in the domestication gene VvmybA1. Theoretical and Applied Genetics, 2007, 114(4): 723-730 ( ).
- DOI: 10.1007/s00122-006-0472-2
- Fournier-Level A., Lacombe T., Le Cunff L., Boursiquot J.M., This P. Evolution of the VvMybA gene family, the major determinant of berry colour in cultivated grapevine (Vitis vinifera L.). Heredity, 2010, 104(4): 351-362 ( ).
- DOI: 10.1038/hdy.2009.148
- Porebski S., Bailey L.G., Baum B.R. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Molecular Biology Reporter, 1997, 15(1): 8-15 ( ).
- DOI: 10.1007/BF02772108
- Azuma A., Kobayashi S., Yakushui H., Yamada M., Mitani N., Sato A. VvmybA1 genotype determines grape skin color. Vitis, 2007, 46(3): 154-155.
- McGinnis S., Madden T.L. BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Research, 2004, 32(suppl_2): 20-25 ( ).
- DOI: 10.1093/nar/gkh435
- Sievers F., Higgins D.G. Clustal Omega, accurate alignment of very large numbers of sequences. In: Multiple sequence alignment methods, vol. 1079 /D. Russel (ed.). Humana Press, Totowa, NJ, 2014: 105-116 ( ).
- DOI: 10.1007/978-1-62703-646-7_6
- Brown N.P., Leroy C., Sander C. MView: a web-compatible database search or multiple alignment viewer. Bioinformatics, 1998, 14(4): 380-381 ( ).
- DOI: 10.1093/bioinformatics/14.4.380
- Kumar S., Stecher G., Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 2016, 33(7): 1870-1874 ( ).
- DOI: 10.1093/molbev/msw054
- Murshudov G.N., Vagin A.A., Dodson E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallographica, 1997, 53(3): 240-255 ( ).
- DOI: 10.1107/S0907444996012255
- Jones D.T., Taylor W.R., Thornton J.M. A model recognition approach to the prediction of all-helical membrane protein structure and topology. Biochemistry, 1994, 33(10): 3038-3049 ( ).
- DOI: 10.1021/bi00176a037
- Ferreira V., Pinto-Carnide O., Arroyo-García R., Castro I. Berry color variation in grapevine as a source of diversity. Plant Physiology and Biochemistry, 2018, 132: 696-707 ( ).
- DOI: 10.1016/j.plaphy.2018.08.021
- Azuma A., Kobayashi S., Goto-Yamamoto N., Shiraishi M., Mitani N., Yakushiji H., Koshita Y. Color recovery in berries of grape (Vitis vinifera L.) ‘Benitaka', a bud sport of ‘Italia', is caused by a novel allele at the VvmybA1 locus. Plant Science, 2009, 176(4): 470-478 ( ).
- DOI: 10.1016/j.plantsci.2008.12.015
- Bolser D.M., Staines D.M., Perry E., Kersey P.J. Ensembl plants: integrating tools for visualizing, mining, and analyzing plant genomic data. In: Plant genomics databases. Methods in Molecular Biology, V. 1533 /A. van Dijk (ed.). Humana Press, New York, NY, 2017: 1-31 ( ).
- DOI: 10.1007/978-1-4939-6658-5_1
- Marchler-Bauer A., Bryant S.H. CD-Search: protein domain annotations on the fly. Nucleic Acids Research, 2004, 32(2): 327-331 ( ).
- DOI: 10.1093/nar/gkh454
- Walker A.R., Lee E., Robinson S.P. Two new grape cultivars, bud sports of Cabernet Sauvignon bearing pale-coloured berries, are the result of deletion of two regulatory genes of the berry colour locus. Plant Molecular Biology, 2006, 62(4): 623-635 ( ).
- DOI: 10.1007/s11103-006-9043-9
- Bowers J.E., Meredith C.P. The parentage of a classic wine grape, Cabernet Sauvignon. Nature Genetics, 1997, 16(1): 84-87 ( ).
- DOI: 10.1038/ng0597-84
- Vezzulli S., Leonardelli L., Malossini U., Stefanini M., Velasco R., Moser C. Pinot blanc and Pinot gris arose as independent somatic mutations of Pinot noir. Journal of Experimental Botany, 2012, 63(18): 6359-6369 ( ).
- DOI: 10.1093/jxb/ers290