Сравнительный анализ филогений симбиотических генов клубеньковых бактерий с использованием метадеревьев

Автор: Карасев Е.С., Чижевская Е.П., Симаров Б.В., Проворов Н.А., Андронов Е.Е.

Журнал: Сельскохозяйственная биология @agrobiology

Рубрика: Симбиогенетика

Статья в выпуске: 5 т.52, 2017 года.

Бесплатный доступ

Для изучения закономерностей эволюции различных групп «симбиотических» генов ( nod -генов, контролирующих образование клубеньков, nif / fix -генов, контролирующих симбиотическую азотфиксацию) был применен модифицированный нами метод филогенетического анализа - построение метадеревьев. Суть метода заключается в попарном сравнении топологий дендрограмм и построении комбинированных дендрограмм (метадеревьев), на которых относительное положение двух деревьев является мерой конгруэнтности филогений соответствующих генов. Для реализации данного метода были выбраны 18 симбиотических генов ( nodABCDIJN, nifABDEHKN, fixABC, fdxB ), гомологи которых присутствуют у каждого из исследуемых организмов (9 штаммов, относящихся к родам Bradyrhizobium, Mesorhizobium, Rhizobium, Sinorhizobium и Neorhizobium ), а также ген 16S рРНК - традиционный хромосомный таксономический маркер. Для каждого из этих генов были построены и сопоставлены филогенетические деревья, затем были рассчитаны коэффициенты попарного сходства их топологий. По полученным данным было построено «метадерево», в пределах которого были выявлены два статистически различающихся кластера генов. В кластер 1 вошли преимущественно nif- и fix- гены, а в кластер 2 - преимущественно nod- гены, что согласуется с данными о раздельной локализации этих групп генов в геномах ризобий. Исключением было расположение генов nifB и fixC в кластере 2 вместе с геном nodA, а также локализация гена nodI в кластере 1 вместе с геном nifD. При анализе структуры выявленных кластеров не было обнаружено строгой зависимости между относительным положением изучаемых генов и особенностями их локализации в геномах клубеньковых бактерий. Важно отметить, что различия между кластерами 1 и 2 выражены не менее четко, чем различия между группами nod - и nif / fix -генов. Очевидно, что кластеры 1 и 2 на построенном нами метадереве отражают в первую очередь различие механизмов эволюции процессов образования клубеньков и симбиотической азотфиксации, связанное с независимым происхождением соответствующих групп генов, а возможно, и с их раздельным горизонтальным переносом между разными группами ризобий. Дальнейшее изучение эволюции симбиотических генов клубеньковых бактерий требует усовершенствования использованной методики филогенетического анализа, включая раздельный анализ метадеревьев для ризобий, представляющих разные этапы эволюции симбиоза.

Еще

Филогенетический анализ, метадеревья, клубеньковые бактерии, симбиотические гены

Короткий адрес: https://sciup.org/142214089

IDR: 142214089   |   DOI: 10.15389/agrobiology.2017.5.995rus

Список литературы Сравнительный анализ филогений симбиотических генов клубеньковых бактерий с использованием метадеревьев

  • Проворов Н., Тихонович И., Андронов Е., Белимов А., Борисов А., Воробьёв Н., Долгих Е., Жернаков А., Жуков В., Кимеклис А., Копать В., Курчак О., Онищук О., Сафронова В., Сулима А., Чижевская Е., Чирак Е., Штарк О. Генетические основы эволюции бактерий -симбионтов растений. СПб, 2016.
  • Доуни Дж. Функции ризобиальных генов клубенькообразования. В кн.: Rhizobiaceae. СПб, 2002: 417-434.
  • Камински П., Батут Ж., Боистард П. Контроль симбиотической фиксации азота ризобиями. В кн.: Rhizobiaceae. СПб, 2002: 465-492.
  • Young J., Crossman L., Johnston A. The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol., 2006, 7(4): R34 ( ) DOI: 10.1186/gb-2006-7-4-r34
  • Reeve W., O'Hara G., Chain P. Complete genome sequence of Rhizobium leguminous-arum bv. trifolii strain WSM2304, an effective microsymbiont of the South American clover Trifolium polymorphum. Stand Genomic Sci., 2010, 2(1): 66-76 ( ) DOI: 10.4056/sigs.44642
  • Barnett M., Fisher R., Jones T. Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid. PNAS USA, 2001, 98(17): 9883-9888 ( ) DOI: 10.1073/pnas.161294798
  • Reeve W., Chain P., O'Hara G. Complete genome sequence of the Medicago microsymbiont Ensifer (Sinorhizobium) medicae strain WSM419. Stand Genomic Sci., 2010, 2(1): 77-86 ( ) DOI: 10.4056/siqs.43526
  • Kaneko T., Nakamura Y., Sato S. Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res., 2002, 9(6): 189-197 ( ) DOI: 10.1093/dnares./9.6.189
  • Kaneko T., Nakamura Y., Sato S. Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res., 2000, 7(6): 331-338 ( ) DOI: 10.1093/dnares./7.6.331
  • Girard M., Flores M., Brom S. Structural complexity of the symbiotic plasmid of Rhizobium leguminosarum bv. phaseoli. J. Bacteriol., 1991, 173(8): 2411-2419.
  • Österman J., March J., Laine P.K. Genome sequencing of two Neorhizobium galegae strains reveals a noeT gene responsible for the unusual acetylation of the nodulation factors. BMC Genomics, 2014, 15: 500 (doi: 10.1186/1471-2164-15-500).
  • Хайнес М., Финан Т. Общая генетика. В кн.: Rhizobiaceae. СПб, 2002: 41-62.
  • Göttfert M., Röthlisberger S., Kündig C. Potential symbiosis-specific genes uncovered by sequencing a 410-kilobase DNA region of the Bradyrhizobium japonicum chromosome. J. Bacteriol., 2001, 183(4): 1405-1412 ( ) DOI: 10.1128/JB.183.4.1405-1412.2001
  • Sullivan J., Ronson C. Evolution of rhizobia by acquisition of a 500-kb symbiosis island that integrates into a phe-tRNA gene. PNAS USA, 1998, 95(9): 5145-5149.
  • González V., Santamaría R., Bustos P. The partitioned Rhizobium etli genome: Genetic and metabolic redundancy in seven interacting replicons. PNAS USA, 2006, 103(10): 3834-3839 ( ) DOI: 10.1073/pnas.0508502103
  • Воробьёв Н., Проворов Н. Моделирование эволюции бобово-ризобиального симби-оза в условиях экологической нестабильности. Экологическая генетика, 2013, 11: 73-85.
  • Provorov N., Andronov E. Evolution of root nodule bacteria: reconstruction of the speciation processes resulting from genomic rearrangements in a symbiotic system. Microbiology, 2016, 83(2): 131-139 ( ) DOI: 10.1134/S0026261716020156
  • Nye T. Trees of trees: an approach to comparing multiple alternative phylogenies. Syst. Biol., 2008, 57(5): 785-794 ( ) DOI: 10.1080/10635150802424072
  • Nye T., Lio P., Gilks W. A nowel algorithm and web-based tool for comparing two alternative phylogenetic trees. Bioinformatics, 2005, 22(1): 117-119.
  • Atkinson E., Palcic M., Hindsgaul O., Long S. Biosynthesis of Rhizobium meliloti lipooligosaccharide Nod-factors: NodA is required for an N-acyltransferase activity. PNAS USA, 1994, 91(18): 8418-8422.
  • John M., Rohrig H., Schmidt J. Rhizobium NodB protein involved in nodulation signal synthesis is chitooligosaccharide deacetylase. PNAS USA, 1993, 90: 625-629.
  • Debelle F., Rosenberg C., Denarie J. The Rhizobium, Bradyrhizobium and Azorhizobium NodC proteins are homologous to yeast chitin synthases. Mol. Plant-Microbe Interact., 1992, 5: 443-446.
  • Peck M., Fisher R., Long S. Diverse flavonoids stimulate NodD1 binding to nod gene promoters in Sinorhizobium meliloti. J. Bacteriol., 2006, 188(15): 5417-5427 ( ) DOI: 10.1128/JB.00376-06
  • Evans I., Downie J. The NodI product of Rhizobium leguminosarum is closely related to ATP-binding bacterial transport proteins: nucleotide sequence of nodI and nodJ Genes. Gene, 1986, 43: 95-101.
  • Baev N., Shultze M., Barlier I. Rhizobium nodM and nodN genes are common nod genes: nodM encodes functions for efficiency of nod signal production and bacteroid maturation. J. Bactreriol., 1992, 174(23): 7555-7565.
  • Putnoky P., Grosskopf E., Cam D. Rhizobium fix-genes mediate at least two communication steps in symbiotic nodule development. J. Cell Biol., 1988, 106: 597-607.
  • Arnold W., Rump A., Klipp W. Nucleotide sequence of 24,206-base-pair DNA fragment carrying the entire nitrogen fixation gene cluster of Klebsiella pneumonia. J. Mol. Biol., 1988, 203: 715-738.
  • Hirch A., Lum M., Downie J. What makes the rhizobia-legume symbiosis so special? Plant Physiol., 2001, 127: 1484-1492 ( ) DOI: 10.1104/pp.010866
  • Проворов Н., Воробьёв Н. Генетические основы эволюции растительно-микроб-ного симбиоза. СПб, 2012.
Еще
Статья научная