Статины и окислительный стресс при сердечно-сосудистой патологии

Автор: Чаулин Алексей Михайлович, Ваньков Владимир Александрович

Журнал: Бюллетень науки и практики @bulletennauki

Рубрика: Медицинские науки

Статья в выпуске: 6 т.8, 2022 года.

Бесплатный доступ

Статины являются высокоэффективным классом гиполипидемических препаратов для профилактики риска развития сердечно-сосудистой патологии. Основной механизм действия статинов основан на ингибировании образования холестерина, что приводит к снижению сывороточных уровней общего холестерина и атерогенных липопротеинов низкой плотности. Однако, помимо основного гиполипидемического действия, статины обладают и значимым влиянием на окислительный стресс. В данной статье подробно рассмотрено влияние статинов на окислительный стресс и значение для сердечно-сосудистой патологии.

Сердечно-сосудистые заболевания, окислительный стресс, статины

Короткий адрес: https://sciup.org/14124427

IDR: 14124427   |   DOI: 10.33619/2414-2948/79/39

Список литературы Статины и окислительный стресс при сердечно-сосудистой патологии

  • Chaulin A. M. Main analytical characteristics of laboratory methods for the determination of cardiac troponins: a review from the historical and modern points of view // Orvosi Hetilap. 2022. V. 163. №1. P. 12-20.
  • Чаулин А. М., Карслян Л. С., Григорьева Е. В., Нурбалтаева Д. А., Дупляков Д. В. Клинико-диагностическая ценность кардиомаркеров в биологических жидкостях человека // Кардиология. 2019. Т. 59. №11. С. 66-75. https://doi.org/10.18087/cardio.2019.11.n414
  • Sacks F. M., Pfeffer M. A., Moye L. A., Rouleau J. L., Rutherford J. D., Cole T. G., Braunwald E. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels // New England Journal of Medicine. 1996. V. 335. №14. P. 1001-1009. https://doi.org/10.1056/NEJM199610033351401
  • Chaulin A. Cardiac Troponins: Contemporary Biological Data and New Methods of Determination // Vascular health and risk management. 2021. №17. P. 299–316. https://doi.org/10.2147/VHRM.S300002
  • Чаулин А. М., Дупляков Д. В. Биомаркеры острого инфаркта миокарда: диагностическая и прогностическая ценность. Ч. 1 // Клиническая практика. 2020. Т. 11. №3. C. 75-84. https://doi.org/10.17816/clinpract34284
  • Чаулин А. М., Григорьева Ю. В., Павлова Т. В., Дупляков Д. В. Диагностическая ценность клинического анализа крови при сердечно-сосудистых заболеваниях // Российский кардиологический журнал. 2020. Т. 25 №12 С. 3923. https://doi.org/10.15829/1560-4071-2020-3923
  • Чаулин А. М., Дуплякова П. Д., Дупляков Д. В. Циркадные ритмы сердечных тропонинов: механизмы и клиническое значение // Российский кардиологический журнал. 2020. №25. C. 4061. https://doi.org/10.15829/1560-4071-2020-4061
  • Shepherd, J., Cobbe, S. M., Ford, I., Isles, C. G., Lorimer, A. R., MacFarlane, P. W., McKillop, J. H., & Packard, C. J. (1995). Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group. The New England journal of medicine, 333(20), 1301–1307. https://doi.org/10.1056/NEJM199511163332001
  • Чаулин А. М., Дупляков Д. В. Повышение натрийуретических пептидов, не ассоциированное с сердечной недостаточностью // Российский кардиологический журнал. 2020. №25. С. 4140. https://doi.org/10.15829/1560-4071-2020-4140
  • Чаулин А. М., Григорьева Ю. В., Дупляков Д. В. Современные представления о патофизиологии атеросклероза. Часть 1. Роль нарушения обмена липидов и эндотелиальной дисфункции (обзор литературы) // Медицина в Кузбассе. 2020. №2. С. 34-41. https://doi.org/10.24411/2687-0053-2020-10015
  • Pedersen T. R., Kjekshus J., Pyörälä K., Olsson A. G., Cook T. J., Musliner T A., Haghfelt T. Effect of simvastatin on ischemic signs and symptoms in the Scandinavian Simvastatin Survival Study (4S) // American Journal of Cardiology. 1998. V. 81. №3. P. 333-335. https://doi.org/10.1016/S0002-9149(97)00904-1
  • Downs J. R., Clearfield M., Weis S., Whitney E., Shapiro D. R., Beere P. A., Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: results of AFCAPS/TexCAPS // Jama. 1998. V. 279. №20. P. 1615-1622. https://doi.org/10.1001/jama.279.20.1615
  • Sever P. S., Dahlöf B., Poulter N. R., Wedel H., Beevers G., Caulfield M., et al. Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial—Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised controlled trial // The Lancet. 2003. V. 361. №9364. P. 1149-1158. https://doi.org/10.1016/S0140-6736(03)12948-0
  • Чаулин А. М., Григорьева Ю. В. Воспаление при атеросклерозе: от теории к практике // Бюллетень науки и практики. 2020. Т. 6. №10. С. 186-205. https://doi.org/10.33619/2414-2948/59/21
  • Chaulin A. M., Grigoryeva Yu. V., Duplyakov D. V. About the role of immunoinflammatory mechanisms in the pathogenesis of atherosclerosis // European Journal of Natural History. 2020. №5. С. 2-6. https://doi.org/10.17513/ejnh.34123
  • Cannon C. P., Braunwald E., McCabe C. H., Rader D. J., Rouleau J. L., Belder R., Skene A. M.Intensive versus moderate lipid lowering with statins after acute coronary syndromes // New England journal of medicine. 2004. V. 350. №15. P. 1495-1504. https://doi.org/10.1056/NEJMoa040583
  • Чаулин А. М. Новые группы гиполипидемических препаратов, основанные на ингибировании пропротеиновой конвертазы субтилизин-кексинового типа 9 (PCSK9). Часть 1. // Клиническая медицина. 2020. Т. 98. №11-12. С. 739-744. https://doi.org/10.30629/0023-2149-2020-98-11-12-739-744
  • Чаулин А. М., Дупляков Д. В. О роли PCSK9 в развитии атеросклероза: молекулярные аспекты // Молекулярная медицина. 2021. Т. 19. №2. С. 8-15. https://doi.org/10.29296/24999490-2021-02-02
  • Чаулин А. М., Григорьева Ю. В. Роль Биопрепаратов в профилактической кардиологии // Научное обозрение. Биологические науки. 2021. №2. С. 10-16.
  • Чаулин А. М., Карслян Л. С., Григорьева Е. В., Нурбалтаева Д. А., Дупляков Д. В. Особенности метаболизма сердечных тропонинов (обзор литературы) // Комплексные проблемы сердечно-сосудистых заболеваний. 2019. Т. 8. №4. С. 103-115. https://doi.org/10.17802/2306-1278-2019-8-4-103-115
  • Brown M. S., Goldstein J. L. Lowering plasma cholesterol by raising LDL receptors // The New England journal of medicine. 1981. V. 305. №9. P. 515–517. https://doi.org/10.1056/NEJM198108273050909
  • Lusis A. J. Genetics of atherosclerosis // Trends in genetics: TIG. 2012. V. 28. №6. P. 267–275. https://doi.org/10.1016/j.tig.2012.03.001
  • Чаулин А. М., Дупляков Д. В. Роль PCSK9 в регуляции транспорта липопротеинов (обзор литературы) // Вопросы биологической, медицинской и фармацевтической химии. 2021. Т. 24. №1. C. 42−45. https://doi.org/10.29296/25877313-2021-01-00
  • Harrison D., Griendling K. K., Landmesser U., Hornig B., Drexler H. Role of oxidative stress in atherosclerosis // The American journal of cardiology. 2003. V. 91. №3A. P. 7A–11A. https://doi.org/10.1016/s0002-9149(02)03144-2
  • O'Donnell V. B., Freeman B. A. Interactions between nitric oxide and lipid oxidation pathways: implications for vascular disease // Circulation research. 2001. V. 88. №1. P. 12–21. https://doi.org/10.1161/01.res.88.1.12
  • Wolin M. S. Interactions of oxidants with vascular signaling systems // Arteriosclerosis, thrombosis, and vascular biology. 2000. V. 20. №6. P. 1430–1442. https://doi.org/10.1161/01.atv.20.6.1430
  • Yang M. X., Cederbaum A. I. Role of cytochrome b5 in NADH-dependent microsomal reduction of ferric complexes, lipid peroxidation, and hydrogen peroxide generation // Archives of biochemistry and biophysics. 1995. V. 324. №2. P. 282–292. https://doi.org/10.1006/abbi.1995.0041
  • Chaulin A. M., Duplyakov D. V. MicroRNAs in Atrial Fibrillation: Pathophysiological Aspects and Potential Biomarkers // International Journal of Biomedicine. 2020. V. 10. №3. P. 198-205. https://doi.org/10.21103/Article10(3)_RA3
  • Beckman J. S., Beckman T. W., Chen J., Marshall P. A., Freeman B. A. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide // Proceedings of the National Academy of Sciences of the United States of America. 1990. V. 87. №4. P. 1620–1624. https://doi.org/10.1073/pnas.87.4.1620
  • Yang G., Candy T. E., Boaro M., Wilkin H. E., Jones P., Nazhat N. B., Saadalla-Nazhat R. A., Blake D. R. Free radical yields from the homolysis of peroxynitrous acid // Free radical biology & medicine. 1992. V. 12. №4. P. 327–330. https://doi.org/10.1016/0891-5849(92)90120-6
  • Chaulin A. M. Biology of Cardiac Troponins // Emphasis on Metabolism. Biology, 2022. V. 11. №3. P. 429. https://doi.org/10.3390/biology11030429
  • Griendling K. K., Ushio-Fukai M. NADH/NADPH Oxidase and Vascular Function // Trends in cardiovascular medicine. 1997. V. 7. №8. P. 301–307. https://doi.org/10.1016/S1050-1738(97)00088-1
  • Münzel T., Hink U., Heitzer T., Meinertz T. Role for NADPH/NADH oxidase in the modulation of vascular tone // Annals of the New York Academy of Sciences. 1999. №874. P. 386–400. https://doi.org/10.1111/j.1749-6632.1999.tb09253.x
  • Chisolm G. M., Steinberg D. The oxidative modification hypothesis of atherogenesis: an overview // Free radical biology & medicine. 2000. V. 28. №12. P. 1815–1826. https://doi.org/10.1016/s0891-5849(00)00344-0
  • Chaulin A. M. Cardiac troponins: current information on the main analytical characteristics of determination methods and new diagnostic possibilities // Medwave. 2021. V. 21. №11. P. e8498. https://doi.org/10.5867/medwave.2021.11.002132
  • Chaulin A. Clinical and Diagnostic Value of Highly Sensitive Cardiac Troponins in Arterial Hypertension // Vascular health and risk management. 2021. №17. P. 431–443. https://doi.org/10.2147/VHRM.S315376
  • Sorescu D., Weiss D., Lassègue B., Clempus R. E., Szöcs K., Sorescu G. P., Valppu L., Quinn M. T., Lambeth J. D., Vega J. D., Taylor W. R., Griendling K. K. Superoxide production and expression of nox family proteins in human atherosclerosis // Circulation. 2002. V. 105. №12. P. 1429–1435. https://doi.org/10.1161/01.cir.0000012917.74432.66
  • Miller F. J., Jr, Gutterman D. D., Rios C. D., Heistad D. D., Davidson B. L. Superoxide production in vascular smooth muscle contributes to oxidative stress and impaired relaxation in atherosclerosis // Circulation research. 1998. V. 82. №12. P. 1298–1305. https://doi.org/10.1161/01.res.82.12.1298
  • Chaulin A. Current characteristics of methods for determining cardiac troponins and their diagnostic value: a mini-review // Revista de la Facultad de Ciencias Medicas (Cordoba, Argentina). 2021. V. 78. №4. P. 415–422. https://doi.org/10.31053/1853.0605.v78.n4.32988
  • De Keulenaer G. W., Alexander R. W., Ushio-Fukai M., Ishizaka N., Griendling K. K. Tumour necrosis factor alpha activates a p22phox-based NADH oxidase in vascular smooth muscle // The Biochemical journal. 1998. V. 329. Pt. 3. P. 653–657. https://doi.org/10.1042/bj3290653
  • Topper J. N., Cai J., Falb D., Gimbrone M. A., Jr Identification of vascular endothelial genes differentially responsive to fluid mechanical stimuli: cyclooxygenase-2, manganese superoxide dismutase, and endothelial cell nitric oxide synthase are selectively up-regulated by steady laminar shear stress // Proceedings of the National Academy of Sciences of the United States of America. 1996. V. 93. №19. P. 10417–10422. https://doi.org/10.1073/pnas.93.19.10417
  • Inoue N., Ramasamy S., Fukai T., Nerem R. M., Harrison D. G. Shear stress modulates expression of Cu/Zn superoxide dismutase in human aortic endothelial cells // Circulation research. 1996. V. 79. №1. P. 32–37. https://doi.org/10.1161/01.res.79.1.32
  • Ku D. N., Giddens D. P., Zarins C. K., Glagov S. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress // Arteriosclerosis (Dallas, Tex.). 1985. V. 5. №3. P. 293–302. https://doi.org/10.1161/01.atv.5.3.293
  • Griendling K. K., Sorescu D., Ushio-Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease // Circulation research. 2000. V. 86. №5. P. 494–501. https://doi.org/10.1161/01.res.86.5.494
  • Griendling K. K., Ushio-Fukai M. Reactive oxygen species as mediators of angiotensin II signaling // Regulatory peptides. 2000. V. 91. №1-3. P. 21–27. https://doi.org/10.1016/s0167-0115(00)00136-1
  • Sundaresan M., Yu Z. X., Ferrans V. J., Irani K., Finkel T. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction // Science (New York, N.Y.). 1995. V. 270. №5234. P. 296–299. https://doi.org/10.1126/science.270.5234.296
  • Moldovan L., Moldovan N. I., Sohn R. H., Parikh S. A., Goldschmidt-Clermont P. J. Redox changes of cultured endothelial cells and actin dynamics // Circulation research. 2000. V. 86. №5. P. 549–557. https://doi.org/10.1161/01.res.86.5.549
  • Guzik T. J., West N. E., Black E., McDonald D., Ratnatunga C., Pillai R., Channon K. M. UltraRapid communications : vascular superoxide production by NAD(P)H OxidaseAssociation with endothelial dysfunction and clinical risk factors // Circulation research. 2000. V. 86. №9. P. 1008. https://doi.org/10.1161/01.res.86.9.1008
  • Azumi H., Inoue N., Takeshita S., Rikitake Y., Kawashima S., Hayashi Y., Itoh H., Yokoyama M. Expression of NADH/NADPH oxidase p22phox in human coronary arteries // Circulation. 1999. V. 100. №14. P. 1494–1498. https://doi.org/10.1161/01.cir.100.14.1494
  • Heitzer T., Schlinzig T., Krohn K., Meinertz T., Münzel T. Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease // Circulation. 2001. V. 104. №22. P. 2673–2678. https://doi.org/10.1161/hc4601.099485
  • Hurst J. K., Barrette W. C., Jr Leukocytic oxygen activation and microbicidal oxidative toxins // Critical reviews in biochemistry and molecular biology. 1989. V. 24. №4. P. 271–328. https://doi.org/10.3109/10409238909082555
  • Harrison J. E., Schultz J. Studies on the chlorinating activity of myeloperoxidase // The Journal of biological chemistry, 1976. V. 251. №5. P. 1371–1374. https://pubmed.ncbi.nlm.nih.gov/176150
  • Daugherty A., Dunn J. L., Rateri D. L., Heinecke J. W. Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions // The Journal of clinical investigation. 1994. V. 94. №1. P. 437–444. https://doi.org/10.1172/JCI117342
  • Rosenfeld M. E., Palinski W., Ylä-Herttuala S., Butler S., Witztum J. L. Distribution of oxidation specific lipid-protein adducts and apolipoprotein B in atherosclerotic lesions of varying severity from WHHL rabbits // Arteriosclerosis (Dallas, Tex.). 1990. V. 10. №3. P. 336–349. https://doi.org/10.1161/01.atv.10.3.336
  • Hazen S. L., Hsu F. F., Mueller D. M., Crowley J. R., Heinecke J. W. Human neutrophils employ chlorine gas as an oxidant during phagocytosis // The Journal of clinical investigation. 1996. V. 98. №6. P. 1283–1289. https://doi.org/10.1172/JCI118914
  • Heinecke J. W. Oxidants and antioxidants in the pathogenesis of atherosclerosis: implications for the oxidized low density lipoprotein hypothesis // Atherosclerosis. 1998. V. 141. №1. P. 1–15. https://doi.org/10.1016/s0021-9150(98)00173-7
  • Hazen S. L., Heinecke J. W. 3-Chlorotyrosine, a specific marker of myeloperoxidasecatalyzed oxidation, is markedly elevated in low density lipoprotein isolated from human atherosclerotic intima // The Journal of clinical investigation. 1997. V. 99. №9. P. 2075–2081. https://doi.org/10.1172/JCI119379
  • Inoue I., Goto S., Mizotani K., Awata T., Mastunaga T., Kawai S., Nakajima T., Hokari S., Komoda T., Katayama S. Lipophilic HMG-CoA reductase inhibitor has an anti-inflammatory effect: reduction of MRNA levels for interleukin-1beta, interleukin-6, cyclooxygenase-2, and p22phox by regulation of peroxisome proliferator-activated receptor alpha (PPARalpha) in primary endothelial cells // Life sciences. 2000. V. 67. №8. P. 863–876. https://doi.org/10.1016/s0024-3205(00)00680-9
  • Wassmann S., Laufs U., Müller K., Konkol C., Ahlbory K., Bäumer A. T., Linz W., Böhm M., Nickenig G. Cellular antioxidant effects of atorvastatin in vitro and in vivo // Arteriosclerosis, thrombosis, and vascular biology. 2002. V. 22. №2. P. 300–305. https://doi.org/10.1161/hq0202.104081
  • 60 Takemoto M., Liao J. K. Pleiotropic effects of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors // Arteriosclerosis, thrombosis, and vascular biology. 2001. V. 21. №11. P. 1712–1719. https://doi.org/10.1161/hq1101.098486
  • Chaulin A. M. Phosphorylation and Fragmentation of the Cardiac Troponin T: Mechanisms, Role in Pathophysiology and Laboratory Diagnosis // International Journal of Biomedicine. 2021. V. 11. №3. P. 250-259. https://doi.org/10.21103/Article11(3)_RA2. http://ijbm.org/v11i3_2.htm
  • Vecchione C., Brandes R. P. Withdrawal of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors elicits oxidative stress and induces endothelial dysfunction in mice // Circulation research. 2002. V. 91. №2. P. 173–179. https://doi.org/10.1161/01.res.0000028004.76218.b8
  • Hattori Y., Nakanishi N., Akimoto K., Yoshida M., Kasai K. HMG-CoA reductase inhibitor increases GTP cyclohydrolase I mRNA and tetrahydrobiopterin in vascular endothelial cells // Arteriosclerosis, thrombosis, and vascular biology. 2003. V. 23. №2. P. 176–182. https://doi.org/10.1161/01.atv.0000054659.72231.a1
  • Chaulin A. M., Grigorieva J. V., Suvorova G. N., Duplyakov D. V. Experimental Modeling of Hypothyroidism: Principles, Methods, Several Advanced Research Directions in Cardiology // Russian Open Medical Journal. 2021. V. 10. №e0311. https://doi.org/10.15275/rusomj.2021.0311
  • Shishehbor M. H., Brennan M. L., Aviles R. J., Fu X., Penn M. S., Sprecher D. L., Hazen S. L. Statins promote potent systemic antioxidant effects through specific inflammatory pathways // Circulation. 2003. V. 108. №4. P. 426–431. https://doi.org/10.1161/01.CIR.0000080895.05158.8B
  • Caslake M. J., Stewart G., Day S. P., Daly E., McTaggart F., Chapman M. J., Durrington P., Laggner P., Mackness M., Pears J., Packard C. J. Phenotype-dependent and -independent actions of rosuvastatin on atherogenic lipoprotein subfractions in hyperlipidaemia // Atherosclerosis. 2003. V. 171. №2. P. 245–253. https://doi.org/10.1016/j.atherosclerosis.2003.08.025
  • Chan D. C., Watts G. F., Barrett P. H., Martins I. J., James A. P., Mamo J. C., Mori T. A., Redgrave T. G. Effect of atorvastatin on chylomicron remnant metabolism in visceral obesity: a study employing a new stable isotope breath test // Journal of lipid research. 2002. V. 43. №5. P. 706–712. https://pubmed.ncbi.nlm.nih.gov/11971941
  • Chan D. C., Watts G. F., Barrett P. H., Mori T. A., Beilin L. J., Redgrave T. G. Mechanism of action of a 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor on apolipoprotein B-100 kinetics in visceral obesity // The Journal of clinical endocrinology and metabolism. 2002. V. 87. №5. P. 2283–2289. https://doi.org/10.1210/jcem.87.5.8455
  • Chaulin A. M. Elevation Mechanisms and Diagnostic Consideration of Cardiac Troponins under Conditions Not Associated with Myocardial Infarction. Part 1. // Life (Basel, Switzerland). 2021. V. 11. №9. P. 914. https://doi.org/10.3390/life11090914
  • Chaulin A. M. Elevation Mechanisms and Diagnostic Consideration of Cardiac Troponins under Conditions Not Associated with Myocardial Infarction. Part 2. // Life (Basel, Switzerland). 2021. V. 11. №11. P. 1175. https://doi.org/10.3390/life11111175
  • Freeman D. J., Norrie J., Sattar N., Neely R. D., Cobbe S. M., Ford I., Isles C., Lorimer A. R., Macfarlane P. W., McKillop J. H., Packard C. J., Shepherd J., Gaw A. Pravastatin and the development of diabetes mellitus: evidence for a protective treatment effect in the West of Scotland Coronary Prevention Study // Circulation. 2001. V. 103. №3. P. 357–362. https://doi.org/10.1161/01.cir.103.3.357
  • Haffner S. M. Do interventions to reduce coronary heart disease reduce the incidence of type 2 diabetes? A possible role for inflammatory factors // Circulation. 2001. V. 103. №3. P. 346–347. https://doi.org/10.1161/01.cir.103.3.346
  • Чаулин А. М., Дупляков Д. В. Кардиопротективные стратегии при доксорубицин-индуцированной кардиотоксичности: настоящее и перспективы // Рациональная Фармакотерапия в Кардиологии. 2022. Т. 18. №1. С. 103-112. https://doi.org/10.20996/1819-6446-2022-02-11
  • Муллова И. С., Чаулин А. М., Свечков Н. А., Павлова Т. В., Лимарева Л. В., Дупляков Д. В. Экспериментальные модели тромбоэмболии легочной артерии // Российский кардиологический журнал. 2022. Т. 27. №1S. С. 4887. https://doi.org/10.15829/1560-4071-2022-4887
  • Deakin S., Leviev I., Guernier S., James R. W. Simvastatin modulates expression of the PON1 gene and increases serum paraoxonase: a role for sterol regulatory element-binding protein-2. // Arteriosclerosis, thrombosis, and vascular biology. 2003. Т. 23. №11. С. 2083–2089. https://doi.org/10.1161/01.ATV.0000096207.01487.36
  • Tomás M., Sentí M., García-Faria F., Vila J., Torrents A., Covas M., Marrugat J. Effect of simvastatin therapy on paraoxonase activity and related lipoproteins in familial hypercholesterolemic patients // Arteriosclerosis, thrombosis, and vascular biology. 2000. V. 20. №9. P. 2113–2119. https://doi.org/10.1161/01.atv.20.9.2113
  • Gouédard C., Koum-Besson N., Barouki R., Morel Y. Opposite regulation of the human paraoxonase-1 gene PON-1 by fenofibrate and statins // Molecular pharmacology. 2003. V. 63. №4. P. 945–956. https://doi.org/10.1124/mol.63.4.945
Еще
Статья обзорная