Structure of the infinite Sylov subgroup in some Shunkov groups
Автор: Senashov V.I.
Журнал: Сибирский аэрокосмический журнал @vestnik-sibsau
Рубрика: Математика, механика, информатика
Статья в выпуске: 1 (47), 2013 года.
Бесплатный доступ
The author studies groups entered by V. P. Shunkov in 1975 and named in his honor Shunkov groups in 2000, for the study the author uses a technique of infinite groups, developed at Krasnoyarsk School on group theory. The aim of the work was to establish the structure of an infinite Sylov 2-subgroup in Shunkov that does not have an almost layer-finite periodic part, when the normalizer of any finite non-trivial subgroup has an almost layer-finite periodic part. The author proves that if a Sylov 2-subgroup of the group is infinite, then it is an extension of a quasi-cyclic 2-group by reversing automorphism. This result will be used in the study of infinite groups with finiteness conditions. The structure of the unknown infinite Sylov 2-subgroup was completely revealed.
Group, sylov subgroup, involution, layer-finiteness
Короткий адрес: https://sciup.org/148177033
IDR: 148177033