Строительство дорожных покрытий с применением комплексно модифицированного цементогрунта
Автор: Вдовин Е.А., Буланов П.Е., Строганов В.Ф., Морозов В.П.
Журнал: Строительство уникальных зданий и сооружений @unistroy
Статья в выпуске: 4 (109), 2023 года.
Бесплатный доступ
Объектом исследования является опытно-промышленное внедрение комплексно модифицированного цементогрунта в строительстве оснований нежестких дорожных одежд. Целью работы является анализ результатов опытно-промышленного внедрения цементогрунта, модифицированного кремнийорганическими соединениями, поликарбоксилатными суперпластификаторами и электролитами, в строительстве оснований нежестких дорожных одежд.
Грунтоцемент, дорожное покрытие, глинистый грунт, опытно-промышленное внедрение, комплексная модификация
Короткий адрес: https://sciup.org/143182720
IDR: 143182720 | DOI: 10.4123/CUBS.109.27
Список литературы Строительство дорожных покрытий с применением комплексно модифицированного цементогрунта
- Gupta, S., Kumar, S. (2022) A state-of-the-art review of the deep soil mixing technique for ground improvement. Innovative Infrastructure Solutions, 8, 129. https://doi.org/10.1007/s41062-023-01098-6.
- Zolotukhin, S.N., Andreev, A.V., Volokitin, V.P. (2020) Non-firing materials using clay soils. IOP Conference Series: Materials Science and Engineering, 962, 022030. https://doi.org/10.1088/1757-899X/962/2/022030.
- Plyuta, K. (2019) Determination of the percentage of lime in the strengthening of clay soils using pH. IOP Conference Series: Materials Science and Engineering, 667, 012079. https://doi.org/10.1088/1757-899X/667/1/012079.
- Bulanov, P.E., Asanbaev, R.B., Khairullin, I.I., Valeeva, G.R., Repenko, D.A., Vdovin, E.A., Mavliev, L.F. (2016) General information on the use and application of road building materials on the basis of soil and Portland cement. News KSUAE, 3(37), 244-249. https://izvestija.kgasu.ru/files/3_2016/244_249_Vdovin_Mavliev.pdf?ysclid=lqoqpkiz1p437502402.
- Kuyukov, S., Testeshev, A., Zhigailov, A., Shmatok, V. (2020) Evaluation of the effectiveness of the soil-cement with hydrophobized surface for road construction. Journal of Physics: Conference Series, 1614, 012007. https://doi.org/10.1088/1742-6596/1614/1/012007
- Shepelev, I.I., Eskova, E.N., Potapova, S.O., Khizhnyak, S.V., Bochkov, N.N. (2019) Ecological aspects of technogenic material application in road construction technologies. IOP Conference Series: Earth and Environmental Science, 315, 052019. https://doi.org/10.1088/1755-1315/315/5/052019.
- Nguyen, H.-S., Adachi, Y., Kizuki, T., Maeba, H., Inazumi, S. (2020) Integration of information and communication technology (ICT) into cement deep mixing method. International Journal of GEOMATE, 19(74), 194–200. https://doi.org/10.21660/2020.74.9329.
- Chudinov, S. (2020) Improving the physical and mechanical properties of fortified soil for road construction in the forest zone. IOP Conference Series: Materials Science and Engineering, 817(1), 012007. https://doi.org/10.1088/1757-899X/817/1/012007.
- Berdov, G.I., Mashkin, N.A. (2015) Perspective directions in improvement of technology and construction materials based on mineral binders. News of Universities. Construction, 4, 45-56. https://www.elibrary.ru/download/elibrary_23762428_81096322.pdf.
- Polyntsev, E., Kvitko, A. (2020). Using foam polyurethane sealers for strengthening of soils of a road bed of transport constructions. IOP Conference Series: Materials Science and Engineering, 832(1), 012029. https://doi.org/10.1088/1757-899X/832/1/012029.
- Chong, S.H. (2019) Development of constitutive model for simulation of cemented soil. Geotechnical and Geological Engineering, 37(5), 4635–4641. https://doi.org/10.1007/s10706-019-00903-3.
- Cai, Y., Xu, L.R., Liu, W.Z., Shang, Y., Su, N., Feng, D. (2020) Field test study on the dynamic response of the cement-improved expansive soil subgrade of a heavy-haul railway. Soil Dynamics and Earthquake Engineering, 128, 105878. https://doi.org/10.1016/j.soildyn.2019.105878.
- Pinto, V.R., Ikuma, K. (2022). Effects of soil surface chemistry on adsorption and activity of urease from a crude protein extract: implications for biocementation applications. Catalysts, 12(2), 230. https://doi.org/10.3390/catal12020230.
- Vdovin, E., Bulanov, P., Stroganov, V., Mavliev, L. (2023) Physical and mechanical characteristics of modified soil cement with polycarboxylate superplasticizers. Proceedings of STCCE. 2022. Lecture Notes in Civil Engineering, 291, 125-133, https://doi.org/10.1007/978-3-031-14623-7_10.
- Roshan, K., Choobbasti, A., Soleimani, K., Fakhrabadi, A. (2021) The effect of adding polypropylene fibers on the freeze-thaw cycle durability of lignosulfonate stabilised clayey sand. Cold Regions Science and Technology, 193(3), 103418. https://doi.org/10.1016/j.coldregions.2021.103418
- Luo, X., Kong, L., Bai, W. (2023) Effect of Superhydrophobic Nano-SiO2 on the Hydraulic Conductivity of Expansive Soil and Analysis of Its Mechanism, Applied Sciences, 13, 8198. https://doi.org/10.3390/app13148198.
- Chong, S.H. (2019) Development of constitutive model for simulation of cemented soil. Geotechnical and Geological Engineering, 37(5), 4635–4641. https://doi.org/10.1007/s10706-019-00903-3.
- Plank, J., Sakai, E., Miao, C.W., Yu, C., Hong, J.X. (2015) Chemical admixtures – Chemistry, Applications and Their Impact on Concrete Microstructure and Durability. Cement and Concrete Research, 78, 81-99. https://doi.org/10.1016/j.cemconres.2015.05.016.
- Kanchanason, V., Plank, J. (2019) Effect of calcium silicate hydrate – polycarboxylate ether (C-S-H–PCE) nanocomposite as accelerating admixture on early strength enhancement of slag and calcined clay blended cements. Cement and Concrete Research. 119(1), 44-50. https://doi.org/10.1016/j.cemconres.2019.01.007.
- Kanchanason, V., Plank, J. (2018) Effectiveness of a calcium silicate hydrate – Polycarboxylate ether (C-S-H–PCE) nanocomposite on early strength development of fly ash cement. Construction and Building Materials, 169, 20-27. https://doi.org/10.1016/j.conbuildmat.2018.01.053.
- Vdovin, E.A., Mavliev, L.F., Bulanov, P.E. (2015) Interaction of complex additive based on octyltriethoxysilane and sodium hydroxide with the basic components of soil for road purpose. Izvestiya KGASU, 1(31), 165-170, https://www.elibrary.ru/item.asp?id=23610731.
- Al-Kheetan, M.J., Rahman, M.M., Chamberlain, D.A. (2020) Moisture evaluation of concrete pavement treated with hydrophobic surface impregnants. International Journal of Pavement Engineering, 21(14), 1746-1754. https://doi.org/10.1080/ 10298436.2019.1567917.
- Roshan, K., Choobbasti, A., Soleimani, K., Fakhrabadi, A. (2021) The effect of adding polypropylene fibers on the freeze-thaw cycle durability of lignosulfonate stabilised clayey sand. Cold Regions Science and Technology, 193(3), 103418. https://doi.org/10.1016/j.coldregions.2021.103418.
- Pichugin, A.P., Grishina, V.A., Khritankov, V.F. (2008) The use of complex additives to strengthen soils in rural construction, Magazine of building materials, 10, 36-38. https://www.elibrary.ru/item.asp?id=11762288&ysclid=lqoryo5wxl945370347.
- Dmitrieva, T.V., Kutsyna, N.P., Bezrodnykh, A.A., Strokova, V.V., Markova, I.Yu. (2019) Efficiency of reinforcement of technological soilby mineral modifiers. Bulletin of BSTU named after V.G. Shukhov, 7, 14-23. https://doi.org/10.34031/article_5d14bdcc8eca43.21244159.
- Kharchenko, I., Murtazaev, S., Saidumov, M., Nakhaev, M. (2015) Compositions of Especially Finely Dispersed Binders (EFDB) for the Injection Fastening the Soils with a Complex Binder of Different Genesis. Ecology and Industry of Russia, 19(3), 48-52. https://doi.org/10.18412/1816-0395-2015-3-48-52.
- Vdovin, E.A., Stroganov, V.F. (2023) Phase structure of cement pastes with antifreeze agents. Magazine of Civil Engineering, 120(4), 12007. https://doi.org/10.34910/MCE.120.7.
- Mavliev, L., Bulanov, P., Vdovin, E., Zaharov, V., Gimazov, A. (2016) Road soil cement with complex additives based on organosilicon compounds and electrolytes. ZKG: ZEMENT-KALK-GIPS INTERNATIONAL, 69(9), 49–54. https://www.semanticscholar.org/paper/Road-soil-cement-with-complex-additives-based-on-Lenar-Pavel/1292a3dd0c1342968024be3a35b48eb5b7ef42ba.
- Bulanov, P.E., Vdovin, E.A., Mavliev, L.F., Stroganov, V.F. (2017) Optimization of the composition and study of the influence of a complex hydrophobic-plasticizing additive on the physical and technical properties of clay soils strengthened with Portland cement. Izvestiya KGASU, 4(42), 376-383. https://izvestija.kgasu.ru/files/4_2017/376_383_Bulanov_Vdovin.pdf?ysclid=lqosx7i4tc892437680.
- Sokolova, Yu.V., Aizenstadt, A.M., Korolev, E.V., Chibisov, A.A. (2020) Assessment of the influence of recipe factors on the structure formation of a polymer-organic binder. Magazine of building materials, 9, 27–36. https://doi.org/10.31659/0585-430X-2020-784-9-27-36.
- Bulanov, P.E., Mavliev, L.F., Vdovin, E.A., Asadullina, A.R., Garayeva, Zh.B., Maksimov, V.G. (2015) Pilot industrial implementation of crushed stone-sand mixture treated with Portland cement in combination with a plasticizing agent and water-repellent additive during highway construction. Izvestiya KGASU, 4(34), 346-351. https://izvestija.kgasu.ru/files/4_2017/376_383_Bulanov_Vdovin.pdf?ysclid=lqosx7i4tc892437680.
- Vdovin, E.A., Stroganov, V.F., Mavliev, L.F. (2023) Hydrophobization of soil-cement for road pavements: modification, structure, technology and application. Publishing house of the Kazan State University of Architecture and Civil Engineering. Kazan, 204. https://www.kgasu.ru/upload/iblock/57c/p61cu2l78vfpif1evemcmu502y73mdn0/Gidrofobizatsiya-tsementogruntov-dlya-dorozhnykh-odezhd.pdf.
- SP 243.1326000.2015. Design et construction of low-volume roads. https://docs.cntd.ru/document/1200128150?ysclid=lqmayqlowr645222491.
- GOST R 58818-2020 Automobile roads with low traffic volume. Design, construction and calculation. https://docs.cntd.ru/document/1200172575?ysclid=lqmb0ococ1559359471.
- GOST R 59120-2021 Automobile roads of general use. Road pavement. General requirements. https://docs.cntd.ru/document/1200178829?ysclid=lqmb2jexbc493455294.
- PNST 542-2021 Automobile roads of general use. Flexible pavement. Design rules. https://docs.cntd.ru/document/1200179561?ysclid=lqmb4wxy1v966941968.
- SP 78.13330-2012 Automobile roads. https://docs.cntd.ru/document/1200095529?ysclid=lqmb8b81q3704722536.
- GOST 33388-2015 Automobile roads of the general use. Requirements to conducting diagnostics and certification. https://docs.cntd.ru/document/1200135143?ysclid=lqmba2ag1g133852827.
- GOST 25100-2020 Soils. Classification. https://docs.cntd.ru/document/1200174302?ysclid=lqmbbzb6m4850695648.
- GOST 23558-94 Crushed stone-gravel-sandy mixtures, and soils treated by inorganic binders for road and airfield construction. Specifications. https://docs.cntd.ru/document/901705984?ysclid=lqmbe0r5gm310521134.
- GOST R 59866-2022 Automobile roads of general use. Flexible pavement indexes of deformation of structural layers of loose materials and soils. Technical requirements and methods of determination. https://docs.cntd.ru/document/1200183468?ysclid=lqmbhskn7q979710225.
- GOST 24452-80 Concretes. Methods of prismatic, compressive strength, modulus of elasticity and Poisson's ratio determination. https://docs.cntd.ru/document/9056198?ysclid=lqmbjeo6r999701136.
- GOST 10180-2012 Concretes. Methods for strength determination using reference specimens. https://docs.cntd.ru/document/1200100908?ysclid=lqmbmedawp124731909.
- GOST 9128-2013 Asphaltic concrete and polimer asphaltic concrete mixtures, asphaltic concrete and polimer asphaltic concrete for roads and aerodromes. Specifications. https://docs.cntd.ru/document/1200108509?ysclid=lqmc3ndsbd335797078.