Структурные преобразования слоя V задней ассоциативной коры головного мозга человека в постнатальном онтогенезе
Автор: Цехмистренко Т.А., Омар С.А., Обухов Д.К., Козлов В.И., Галейся Е.Н., Гурова О.А., Кучук А.В., Митрофанова Е.С.
Журнал: Морфологические ведомости @morpholetter
Рубрика: Оригинальные исследования
Статья в выпуске: 4 т.31, 2023 года.
Бесплатный доступ
Задняя ассоциативная область (regio associative posterior - RAP) неокортекса включена в наиболее сложные функциональные системы мозга и участвует в реализации межанализаторного синтеза информации, восприятия, внимания, памяти и когнитивной деятельности. В значительной степени функции RAP определяются микроструктурой слоя V, обеспечивающего многообразие связей в составе нейросетей. Благодаря прижизненным методам исследования мозга человека развиваются представления о функциональных особенностях, но не о структурных преобразованиях различных зон RAP в процессе постнатального развития. Цель исследования состояла в изучении возрастных структурных преобразований внутренней пирамидной пластинки в составе отличающихся по структуре, функциям и топографии зон задней ассоциативной области коры большого мозга у детей от рождения до 12 лет. Объектом исследования послужила задняя ассоциативная область (поля 37 и 19) коры левых полушарий большого мозга 73 мальчиков в возрасте от рождения до 12 лет, погибших от травм без повреждений головного мозга. На парафиновых срезах, окрашенных крезиловым фиолетовым по Нисслю, в годовых интервалах изучали возрастные изменения толщины слоя V и площади профильных полей пирамидных нейронов в его составе. Для визуализации препаратов использовали технологию Image Tools (USA), для морфометрии - программу ImageExpert™ Gauge (Россия). Математическая обработка данных включала ANOVA и ранговый корреляционный анализ Спирмена. Значимые возрастные изменения микроструктуры слоя V RAP наблюдались в течение первых трех лет жизни детей, а также в возрасте от 6 до 8 лет. Они происходили гетерохронно, гетеродинамически и отличались специфическими количественными показателями в поле 37 височной области и поле19 затылочной области коры в составе RAP. Локальная специфичность формообразующих процессов при их общей однотипной направленности наблюдалась в подполях 37ас, 37а и 37d, в которых микроструктурные параметры имели различную степень взаимосвязи в процессе развития, а также отличались по срокам, темпам и интенсивности наблюдаемых изменений.
Головной мозг человека, задняя ассоциативная кора, слой v, пирамидные нейроны, постнатальный онтогенез
Короткий адрес: https://sciup.org/143183606
IDR: 143183606 | DOI: 10.20340/mv-mn.2023.31(4).824
Список литературы Структурные преобразования слоя V задней ассоциативной коры головного мозга человека в постнатальном онтогенезе
- Kumar A, Wroten M. Agnosia. 2023 Jan 30. In. Treasure Island (FL): StatPearls Publishing, 2023. https.//pubmed.ncbi.nlm.nih.gov/29630208
- Barton JJ. Higher cortical visual deficits. Continuum (Minneapolis, Minn.), 20 (4 Neuro-ophthalmology). 2014.922-941. https.//doi.org/10.1212/01.CON.0000453311.29519.67
- Brodmann K. Brodmann's Localisation in the Cerebral Cortex. The Principles of Comparative Localisation in the Cerebral Cortex Based on Cyto-architectonics by Dr. K. Brodmann. New York-London. Springer Science, 2006.- 295pp
- Eifuku S. Shinkei kenkyu no shinpo [Brodmann Areas 27, 28, 36 and 37. The Parahippocampal and the Fusiform Gyri]. Brain and nerve. 2017;69(4).439-451. https://doi.org/10.11477/mf.1416200762.
- Atlas tsitoarkhitektoniki kory bol'shogo mozga chelovek. Pod red. Sarkisova S.A., Filimonova I.N, Kononovoj E.P., Preobrazhenskoj N.S., Ku-kueva L.A. Moskva. Medgiz, 1955.- 278s. In Russian
- Taylor J, Xu Y. Representation of color, form, and their conjunction across the human ventral visual pathway. Neurolmage. 2022;251(118941).19. https.//doi.org/10.1016/j.neuroimage.2022.118941
- Dadario NB, Tanglay O, Stafford JF, et al. Topology of the lateral visual system. The fundus of the superior temporal sulcus and parietal area H connect nonvisual cerebrum to the lateral occipital lobe. Brain and behavior. 2023;13(4).e2945. https.//doi.org/10.1002/brb3.2945
- Barnikol UB, Amunts K, Dammers J, et al Pattern reversal visual evoked responses of V1/V2 and V5/MT as revealed by MEG combined with probabilistic cytoarchitectonic maps. Neurolmage. 2006;31(1).86-108. https.//doi.org/10.1016/j.neuroimage.2005.11.045
- Prasad JA, Carroll BJ, Sherman SM. Layer 5 Corticofugal Projections from Diverse Cortical Areas. Variations on a Pattern of Thalamic and Extrathalamic Targets. The Journal of neuroscience. the official journal of the Society for Neuroscience. 2020;40(30).5785-5796. https.//doi.org/10.1523/jneurosci.0529-20.2020
- van Kemenade BM, Seymour K, Wacker E, Spitzer B, Blankenburg F, Sterzer P. Tactile and visual motion direction processing in hMT+/V5. Neurolmage. 2014;84:420-427. https.//doi.org/10.1016/j.neuroimage.2013.09.004
- Riecansky I. Extrastriate area V5 (MT) and its role in the processing of visual motion. Ceskoslovenska fysiologie. 2004;53(1):17-22. https.//pubmed. ncbi.nlm. nih. gov/15702885
- Grill-Spector K, Weiner KS, Kay K, Gomez J. The Functional Neuroanatomy of Human Face Perception. Annual review of vision science. 2017;3.167-196. https.//doi.org/10.1146/annurev-vision-102016-061214
- Barton JJS. Face processing in the temporal lobe. Handbook Clin Neurol. 2022;187.191-210. https.//doi.org/10.1016ß 978-0-12-823493-8.00019-5
- Liu Ml, Liang Fr, Zeng F, et al. Cortical-limbic regions modulate depression and anxiety factors in functional dyspepsia. a PET-CT study. Ann Nucl Med. 2012;26.35-40. https.//doi.org/10.1007/s12149-011-0537-4
- Nakhla N, Korkian Y, Krause MR, Pack CC. Neural Selectivity for Visual Motion in Macaque Area V3A. eNeuro. 2021;8(1).eneuro.0383-20.2020. https.//doi.org/10.1523/eneuro.0383-20.2020
- Schneider C, Rasband W, Eliceiri K. NIH Image to ImageJ. 25 years of image analysis. Nat Methods. 2012;9.671-675. https.//doi.org/10.1038/nmeth.2089
- Lemeshko BJu. Neparametricheskie kriterii soglasiya. Moskva. INFRA-M, 2014.- 163s. In Russian
- Potapova IG, Katinas GS, Stefanov SB. Otsenka i sravnenie srednikh velichin s uchyotom variabel'nosti pervichnykh izmeryaemykh ob"ektov i individual'noy izmenchivosti. Arkhiv anatomii, gistologii i embriologii. 1983;85(9).86-92. In Russian
- Glants S. Mediko-biologicheskaya statistika. Per. s angl. Moskva. Praktika, 1998.-459s. In Russian
- Omar S, Tsekhmistrenko TA, Kozlov VI, i dr. Mikrostrukturnye izmeneniya zadney assotsiativnoy kory bol'shogo mozga u detey v techenie pervogo goda zhizni. Zhurnal anatomii i gistopatologii. 2022;11(3).39-48. In Rudssian. https.//doi.org/10.18499/2225-7357-2022-11-3-39-48
- de Jong AP, Schmitz SK, Toonen RF, Verhage M. Dendritic position is a major determinant of presynaptic strength. The Journal of cell biology. 2012;197(2).327-337. https.//doi.org/10.1083/jcb.201112135
- Kwan WC, Chang CK, Yu HH, et al. Visual Cortical Area MT Is Required for Development of the Dorsal Stream and Associated Visuomotor Behaviors. The Journal of neuroscience. the official journal of the Society for Neuroscience. 2021;41(39).8197-8209. https.//doi.org/10.1523/jneurosci.0824-21.2021
- Ardila A, Bernal B, Rosselli M. Language and visual perception associations. meta-analytic connectivity modeling of Brodmann area 37. Behavioural neurology. 2015;565871(14). https.//doi.org/10.1155/2015/565871
- Bullock D, Takemura H, Caiafa CF, et al. Associative white matter connecting the dorsal and ventral posterior human cortex. Brain structure & function. 2019;224(8).2631-2660. https.//doi.org/10.1007/s00429-019-01907-8
- Gurtubay-Antolin A, Battal C, Maffei C, et al. Direct Structural Connections between Auditory and Visual Motion-Selective Regions in Humans. The Journal of neuroscience. the official journal of the Society for Neuroscience. 2021;41(11).2393-2405. https.//doi.org/10.1523/jneurosci.1552-20.2021
- Brovelli A, Badier JM, Bonini F, et al. Dynamic Reconfiguration of Visuomotor-Related Functional Connectivity Networks. The Journal of neuroscience. the official journal of the Society for Neuroscience. 2017;37(4).839-853. https.//doi.org/10.1523/jneurosci.1672-16.2016