Studies on the effect of Cu (II) ions on the antioxidant enzymes in chickpea (Cicer arietinum L.) cultivars

Автор: Sharma Anshula, Singh Gurpreet

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 1 т.9, 2013 года.

Бесплатный доступ

Seed is a developmental stage that is highly protective against external stresses in the plant life cycle. Present study was undertaken with the aim to elucidate the toxic effect of Cu (II) ions on the antioxidant enzymes in chickpea cultivars during seed development and growth. Seven-day-old seedlings were subjected to different concentrations (0-100 ppm) of CuSO 4*7H 2O for 2 days followed by analysis of effect on different antioxidant enzymes. Our results indicated that with the increase in the Cu ion concentration, the antioxidant activities of catalase, ascorbate peroxidase and superoxide dismutase showed a differential behavioral pattern. Besides the antioxidant activity, the toxic affect was also observed in other physiological parameters viz. root/shoot length, RWC and lipid peroxidation. This study indicates that the toxicity of Cu stress is dependent on the physiological state of tissue surrounding the embryo is in part responsible for determining the toxicity.

Еще

Antioxidant enzymes, chickpea, copper sulphate stress, lipid peroxidation

Короткий адрес: https://sciup.org/14323722

IDR: 14323722

Список литературы Studies on the effect of Cu (II) ions on the antioxidant enzymes in chickpea (Cicer arietinum L.) cultivars

  • Aebi, H. (1984) Catalase in vitro. Methods Enzymol., 105, 121-126.
  • Ahmed, A., Hasnain, A., Akhtar, S., Hussain, A., Mahmood, S. and Wahid. (2010) Antioxidant enzymes as bio-markers for copper tolerance in safflower (Carthamus tinctorius L.). African Jour. Biotech., 9, 5441-5444.
  • Alaoui-Sossé, B., Genet, P., Vinit-Dunand, F., Toussaint, M., Epron,D., and Badot, P.M. (2004) Effect of copper on growth in cucumber plants (Cucumis sativus) and its relationships with carbohydrate accumulation and changes in ion contents. Plant Sci., 166, 1213-1218.
  • Alscher, R.G., Erturk, N. and Heath, L.S. (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plant. Jour. Exp. Bot., 53, 1331-1341.
  • Bowler, C., Montagu, M.V. and Inze, D. (1992) Superoxide dismutase and stress tolerance. Annu.Rev. Plant Physiol. Plant Mol. Biol., 43, 83-116.
  • Castillo, F.J. (1996) Antioxidative protection in the inducible CAM plant Sedum album L. following the imposition of severe water stress and recovery. Oecologia, 107, 469-477.
  • Demiral, T. and Türkan, I. (2005) Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing insalt tolerance. Environ. Exp.Bot., 53, 247-257.
  • Drazkiewicz, M., Skorzynska-Polit, E. and Z. Krupa. (2004) Copper-induced oxidative stress and antioxidant defense in Arabidopsis thaliana. Biometals, 17, 379-387.
  • Fernandez, J.C. and Henriquez, F.S. (1991) Biochemical, physiological and structural effect of copper in plants. Bot. Rev., 57, 246-273.
  • Gao, S., Yan, R., Cao, M., Yang, W., Yang, S. and Chen, F. (2008) Effects of copper on growth, antioxidant enzymes and phenylalanine ammonia-lyase activities in Jatropha curcas L. seedling. Plant Soil Environ., 54, 117-122.
  • Hall, J. L. (2002) Cellular mechanisms for heavy metal detoxification and tolerance. Jour.Exp. Bot., 53,1-11.
  • Heath, R.L. and Packer, L. (1968) Photoperoxidation in isolated chloroplasts: Kinetics and Stoichiometry of Fatty Acid Peroxidation. Arch.Biochem. Biop. 125, 189-198.
  • Hegedus, A., Erdei, S. and Horvath, G. (2001) Comparative studies of H2O2detoxifying enzymes in green and greening barley seedlings under cadmium stress. Plant Sci., 160, 1085-1093.
  • Li, M., Hu, C.W., Zhu, Q., Chen, L., Kong, Z.M. and Liu, Z.L. (2006) Copper and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in the micro-alga Pavlova viridis (Prymnesiophyceae). Chemosphere, 62, 565-572.
  • Lombardi, L. and Sebastiani, L. (2005) Copper toxicity in Prunus cerasifera: growth and antioxidant enzymes responses of in vitro grown plants. Plant Sci., 168, 797-802.
  • Mithofer, A., Schulze, B. and Boland, W. (2004) Biotic and heavy metal stress response in plants: evidence for common signals. FEBS Letters, 566, 1-5.
  • Mittler, R. (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci., 7, 405-410.
  • Mobin, M., and Khan, N. A. (2007) Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. Jour. Plant Physiol., 164, 601-610.
  • Nakano, Y. and Asada, K. (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplast. Plant Cell Physiol., 22, 867-880.
  • Ross, S.M. (1994) Toxic Metals in Soil-Plant Systems.Wiley, Chichester.
  • Roth, E.F. Jr. and Gilbert, H.S. (1984) Pyrogallol assay for SOD: absence of a glutathione artifact. Anal Biochem., 137, 50-53.
  • Shao, H.B., Chu, L.Y., Lu, Z.H. and Kang, C.M. (2008) Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells. Int.Jour.Biol.Sci., 4, 8-14.
  • Słomka, A., Libik-Konieczny, M., Kutaa, E. and, Miszalskib, Z. (2008) Metalliferous and non-metalliferous populations of Viola tricolor represent similar mode of antioxidative response. Jour. Plant Physiol., 165, 1610-1619.
  • Solanki, R., Dhankhar, R. and Poonam, A. (2011) Zinc and copper induced changes in physiological characteristics of Vigna mungo (L.). Jour.Environ.Biol., 32: 747-751.
  • Srivastava, S., Tripathi, R.D. and Dwivedi, U.N. (2004) Synthesis of phytochelatins and modulation of antioxidants in response to cadmium stress in Cuscutare flexa-An Angiospermic Parasite. Jour. Plant Physiol., 161: 665-674.
  • Wang, M.E. and Zhou, Q.X. (2006) Effects of herbicide chlorimuron-ethyl on physiological mechanisms in wheat (Triticum aestivum). Ecotoxicol. Environ. Saf., 64, 190-197.
  • Yadav, S.K. (2010) Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South African Jour.Bot., 76, 167-179.
Еще
Статья научная