Study of a laboratory circuit with a warm baseboard in pulse mode
Автор: Yang Ch.
Журнал: Бюллетень науки и практики @bulletennauki
Рубрика: Технические науки
Статья в выпуске: 6 т.10, 2024 года.
Бесплатный доступ
The increasing global energy demand is a problem that people have been paying attention to, people’s demand for energy is increasingly urgent, and improving energy efficiency has become a hot topic in this century. Studies have shown that pulsating flow has an important effect on heat transfer, and it has been concluded in most literatures that turbulent pulsation can enhance heat transfer in different degrees. Pulsation heat transfer is a comprehensive heat transfer process, and the best heat transfer performance can be achieved only when the thermal resistance of each part is reasonably coordinated. Based on the principle of hydraulic shock, this paper develops a device with warm substrate which can be used to increase the pulsating pressure and enhance the heat transfer efficiency of pulsating flow. Firstly, the construction scheme of the experimental device is proposed, and the working principle of the experimental device is described in detail. The complex impedance, frequency function, amplitude-frequency characteristic and phase-frequency characteristic are obtained by mathematical transformation of power supply circuit. Finally, the frequency response of the circuit is constructed.
Hydraulic, heat exchanger, heat, flow, heat transfer
Короткий адрес: https://sciup.org/14130177
IDR: 14130177 | DOI: 10.33619/2414-2948/103/36
Список литературы Study of a laboratory circuit with a warm baseboard in pulse mode
- Edwards M. F., Wilkinson W. L. Review of potential applications of pulsating flow in pipes // Transactions of the Institution of Chemical Engineers and the Chemical Engineer. 1971. V. 49. №2. P. 85-&.
- Evans N. A. Heat transfer through the unsteady laminar boundary layer on a semi-infinite flat plate Part II: Experimental results from an oscillating plate // International Journal of Heat and Mass Transfer. 1973. V. 16. №3. P. 567-570. DOI: 10.1016/0017-9310(73)90224-X
- Ahčin Ž., Liang J., Engelbrecht K., Tušek J. Thermo-hydraulic evaluation of oscillating-flow shell-and-tube-like regenerators for (elasto) caloric cooling // Applied Thermal Engineering. 2021. V. 190. P. 116842. DOI: 10.1016/j.applthermaleng.2021.116842 EDN: BSXIEZ
- Макеев А. Н., Левцев А. П. Импульсные системы теплоснабжения общественных зданий // Региональная архитектура и строительство. 2010. №2. С. 108-114. EDN: MXHSVX
- 张亮 张安龙, 曲平平 荆宇燕. 脉动流场下波壁管内流体流动与换热特性 //科学技术与工程. 2022. V. 22. №1. P. 173-178.
- Левцев А. П., Макеев А. Н. Импульсные системы тепло- и водоснабжения. Саранск: Изд-во Мордовского ун-та, 2015. 171 с.
- Левцев А. П., Макеев А. Н., Макеев Н. Ф., Нарватов Я. А., Голянин А. А. Обзор и анализ основных конструкций ударных клапанов для создания гидравлического удара // Современные проблемы науки и образования. 2015. №2-2. С. 188-188. EDN: UZJAOV
- Левцев А. П., Макеев А. Н., Кудашев С. Ф. Импульсные системы теплоснабжения // Энергоэффективные и ресурсосберегающие технологии и системы. 2010. С. 3-7. EDN: WLGIUH
- 周迎真.基于新型膜增压装置的脉动传热系统仿真与实验研究. 江苏 江苏科技大学 2020.