Study of consolidation features for fragmentally nanostructured hard metal composites

Автор: Gordeev Yu. I., Jasinski V.B., Anistratenko N.E., Binchurov A.S., Vadimov V.N.

Журнал: Сибирский аэрокосмический журнал @vestnik-sibsau

Рубрика: Технологические процессы и материалы

Статья в выпуске: 1 т.19, 2018 года.

Бесплатный доступ

The results of experimental studies combined with modeling and prediction methods for the properties of hard metal composites show that modification with additives of ceramic nanoparticles and composite powders (WC-Co) allows to control microstructure parameters and provides the increase in binding durability and the level of physicomechanical properties of a hard alloy in general. Simultaneous complex application of submicrocrystalline WC carbides coated with Co layer and alloying additives of Al2O3 nanoparticles - grain growth inhibitors of the main phase, can be consid- ered as the most perspective direction of nanostructured hard metal with increased hardness, strength and crack resis- tance production. The coating of carbide particles with a binder layer is an effective starting method that allows to ob- tain a volumetric billet with maintaining the unique properties of the initial nanopowders and ensures a uniform distri- bution of the phases (WC, Co, Al2O3). Such a multiphase fragmented nanostructured composite is characterized by additional heterogeneity, determined by differences in size and elastic phases properties. By combining the sizes and properties of the phase components in such a heterogeneous composite, it is possible to provide an increase in the frac- ture energy, i. e., Palmkvist crack resistance up to 16-18 MPa m1/2 (due to inhibition on nanoparticles inclusions, stress reliefs and changes in intercrystalline crack trajectory, its length decrease). Based on the proposed stereological mod- els and the experimentally established relationships between composition and microstructure parameters, the required volume concentrations of nanoparticles additives and composite powders (WC-Co) were determined.

Еще

Hard metal composites, nanopowders of ceramic, inhibitors, composite carbides, modeling and micro- structure parameters, fracture resistance

Короткий адрес: https://sciup.org/148177788

IDR: 148177788

Список литературы Study of consolidation features for fragmentally nanostructured hard metal composites

  • Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide -A review/Zak Z. Fang //Int. Journal of Refractory Metals & Hard Materials. 2009. Vol. 27. Pp. 288-299.
  • Andrievski R. A., Glezer A. M. Strength of nanostructures//Physics-Uspekhi. 2009. Vol. 52, no. 4. P. 315-334.
  • Panov V. S., Zaitsev A. A Trends of development the technology ultrafine and nanosized tungsten carbide WC-Co -A review//Proceedings of the universities. Powder metallurgy and functional coatings. 2014, no. 3. Pp. 38-48.
  • González OliverGonzález Oliver C. J. R., Álva-rez E. A., García J. L. Kinetics of densification and grain growth in ultrafine WC-Co composites//Int. Journal of Refractory Metals and Hard Materials. 2016, № 59. Р. 121-131.
  • Rempel’ A. A., Kurlov A. S., Tsvetkov Yu. V. Tungsten carbide nanopowder for WC-Co hard alloys//Proceedings of the Fourth All-Union Conference on Nanomaterials. M.: IMET RAN, 2011. Р. 71.
  • Effects of Cr3C2 additions on the densification, grain growth and properties of ultrafine WC-11Co composites by spark plasma sintering/L. Sun //Int. J. Refract. Met. Hard. Mater. 2008. Vol. 26. Р. 357-361.
  • NbC as grain growth inhibitor and carbide in WC-Co hardmetals/S. G. Huang //International Journal of Refractory Metals & Hard Materials. 2008. № 26. P. 389-395.
  • Cholsong P., Ji L., Zhimeng G. Microstructure and properties of ultrafine WC-10Co composites with chemically doped VC//Rare metals. 2011. Т. 30, № 2. Р. 183-188.
  • Vollath D., Szabo D. V. Coated nanoparticles: A new way to improved nanocomposites//Journal of Nanoparticle Research. 1999, Vol. 1. P. 235-242.
  • Nikolaenko I., Kedin N., Shveikin G. Synthesis of ultrafine powder (W, Ti) C by microwave heating in a stream of argon//International Journal of Materials Research. 2014. Вып. 105, № 12. P. 1232-1235.
  • Essaki K., Rees E. J., Burstein G. T. Synthesis of Nanoparticulate Tungsten Carbide Under Microwave Irradiation//J. Amer. Ceram. Sos. 2010. Т. 93, № 3. С. 692-695.
  • High resolution microscopy study in Cr3C2-doped WC-Co/T. Yamamoto //Journal of Materials Science. 2001. № 36. Р. 3885-3890.
  • Powder metallurgy world congress and exhibition/Y. Gordeev 1998. Vol. 4. P. 140-146.
  • Gordeev Yu., Abkaryan A., Zeer G. Design and research of cemented carbides and ceramic composites modified by nanoparticles//Advanced Materials. 2012, № 5. P. 76-88.
  • Гордеев Ю. И., Абкарян А. К. Возможности повышения прочности твердосплавных материалов и эксплуатационной стойкости режущего инструмента путем применения термомеханической обработки//Станки и инструмент. 2013. № 3. C. 30-34.
  • Nakamura M., Gurland J. The fracture toughness of WC-Co twoophase alloys: A preliminary model//Metall. Trans. A. 1980. Vol. 11, № 1. Pp. 141-146.
  • Godse R., Gurland J. Applicability of the critical strength criterion to WC-Co//J. Mater. Sci. Eng. A. 1988, Vol. 106. Pp. 331-336.
  • Гордеев Ю. И. /Ю. И. Гордеев . Вестник СибГАУ, 2013. Т. 49, № 3. С. 174-181.
  • Конструирование и исследование наноструктурированных твердосплавных композитов с повышенным уровнем прочностных и эксплуатационных характеристик за счет модифицирования наночастицами и термомеханической обработки/Ю. И. Гордеев //Вестник СибГАУ. 2014. № 4 (56). С. 209-218.
  • Kurlov A. S. Vacuum sintering of WC-8 wt. % Co hardmetals from WC powders with different dispersity//International Journal of Refractory Metals and Hard Materials. 2011. № 29 (2). Pp. 221-231.
  • Design and Investigation of Hard Metal Composites Modified by Nanoparticles/Y. I. Gordeev //Advanced Materials Research. 2014. Vol. 1040. Pp. 13-18.
  • Дворник М. И., Михайленко Е. А. Моделирование процесса распространения трещины в субмикронных и наноструктурных твердых сплавах//Механика композиционных материалов и конструкций. 2014. Т. 20, № 1. C. 3-15.
  • Pattern of the B4C Ceramics Surface Deformation at Local Loading/E. S. Dvilis //Advanced Materials Research. 2014. Vol. 872. P. 60-64.
  • Поздняков В. А., Глезер А. М. Структурные механизмы разрушения нанокристаллических материалов//Физика твердого тела. 2005. Т. 47, № 5. C. 793-800.
  • Influence of Additives of Nanoparticles on Structure Formation of Fine-Grained Hardmetals/Y. I. Gordeev //Key Engineering Materials. 2017. Vol. 743. Pp. 3-8.
  • Гордеев Ю. И. Разработка эффективных путей управления структурой и свойствами твердосплавных композитов, модифицированных наночастицами/Ю. И. Гордеев //Журнал Сибирского федерального университета. Сер.: «Техника и технологии». 2014. Т. 7, № 3. С. 270-289.
Еще
Статья научная